The 2021 Net Zero Webinar Series is brought to you by our NZC Silver Sponsor Member Owens Corning

www.OwensCorning.ca

MEET THE OWENS CORNING BUILDING SCIENCE TEAM

Contact the Building Science Team Member in your area for information on products or solutions

RESIDENTIAL BUILDER EVENTS

Lunch & Learn Seminar available on topics such as:

- Building Net Zero Energy/Net Zero Energy Ready Homes
- High Performance Building Enclosure Systems

ARCHITECT DESIGN EVENTS

Lunch & Learn Seminar available on topics such as:

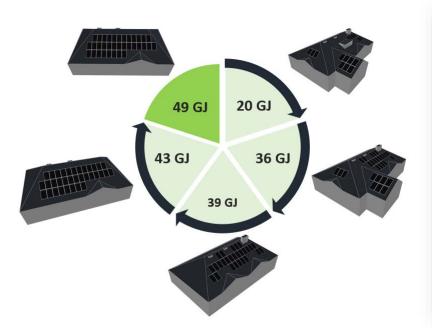
- Principles of Acoustics and new ASTC Code Requirements
- Eliminating Thermal Bridges and Online Design Tools
- High Performance Building Envelope Solutions

ONTARIO Ernie Lee, P. Eng Technical Sales Manager, Ontario ernie.lee@owenscorning.com 1.833.670.0208

QUEBEC & ATLANTIC CANADA Salvatore Ciarlo, P.Eng Architectural Solutions & Technical Services Manager, Canada salvatore.ciarlo@owenscorning.com 1.800.504.8294

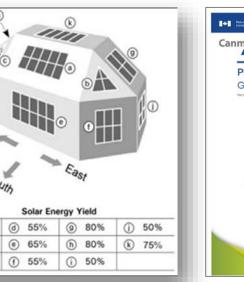
Luis Faria, B.Eng, PMP, CMgr MCMI Technical Sales Manager, Western Canada Iuis.faria@owenscorning.com 1.833.258.5299

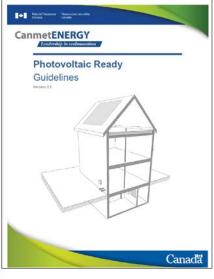
Thank you to our NZC Bronze Sponsor Members:

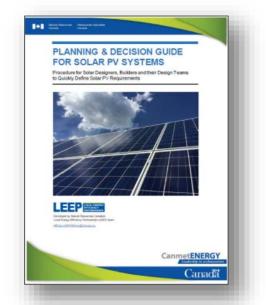


Photovoltaics in the Net Zero Program: Role of the Energy Advisor

- Net Zero vs Net Zero Ready & Solar Ready vs PV Ready
- Importance of PV Design: the Energy "Budget"
- Net Zero EAs serve as the conduit between builders/renovators & PV professionals




Photovoltaics in the Net Zero Program: Energy Advisor Training & Tools


Net Zero Energy Advisor PV Training approach:

- PV Knowledge
- Tools and understanding limitations of each
- Verification Forms

		leted by the installer of the PV s an PV Ready Guidelines for the o			er as part of the		(
Documentation							
The system documentat	ion should include, a	as a minimum, the following eleme	nts:				
As-built system drawings	and specification sheet	s of all system components from supplie	ers/manufacturers				~
Cperations manuals of al	I system components fr	rom suppliers/manufacturers					
		mance and operation (via tests & photo:	s)				- N
Grid connection confirma							01
		aller's workmanship and performance w					W
Training/orientation to or	wher on basic system of	peration, typically at pre-delivery inspec	tion				- NI
PV System Details							0
PV module make	6	Module nameplate rating		Number of PV modules			1.
Roof Mount		Wall Mount		Ground Mount			No
Make/model of other major	system components (i.e	e. inverter)					est
Horizontal tilt angle and azim	nuth (direction) of PV sy	stem on all planes					
System Peak DC Watts (as de	esigned) - the product of th	e nameplate PV module rating and the total num	nber of PV modules				
System Operational DC Volta	age (as designed) - the inp	out DC voltage rating of the inverter					
System Open Circuit DC Volt	age (as designed) - the Pi	V module open circuit voltage rating and the num	nber of PV modules connected				
System Short Circuit DC Curr	rent - the nameplate PV mod	dule short circuit rating and the number of PV mo	odules in the array				Se
		rgy consumption/generation information must be	available to occupants				-(
Shut off/disconnect switch is	clearly marked and visi	ble - note location					
Array Tests							
Solar conditions at time of th	ne array tests (i.e. irradia	ance and temperature)					
Measure the open circuit vol	itage of each PV string o	f PV modules in series before they are in	terconnected and record			0	100%
Record the system DC Voltag	ge – at string level or array le	evel					10070
Record the system DC Curren	nt - if not available specify h	Q/A				б	95%
Record the grid Voltage							
Record the system VAC - the	Voltoge between the inverter	r and the meter				0	95%
Record the system PAC - the	energy the system is generot	sing at one point in time (in Watts)					

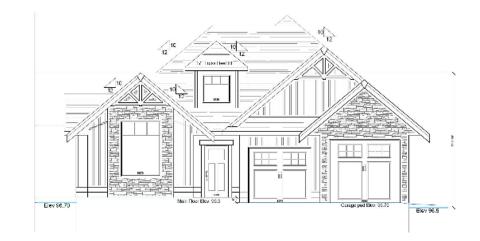
10 Steps to PV: LEEP Planning and Decision Guide for Solar PV Systems

CHBA National Webinar - January 27th, 2021

PLANNING & DECISION GUIDE FOR SOLAR PV SYSTEMS

Procedure for Solar Designers, Builders and their Design Teams to Quickly Define Solar PV Requirements

CanmetENERGY


Canada

Natural Resources Ressources naturelles

Developed by Natural Resources Canada's Local Energy Efficiency Partnerships (LEEP) team.

NRGan.LEEP.RNCan@Canada.ca

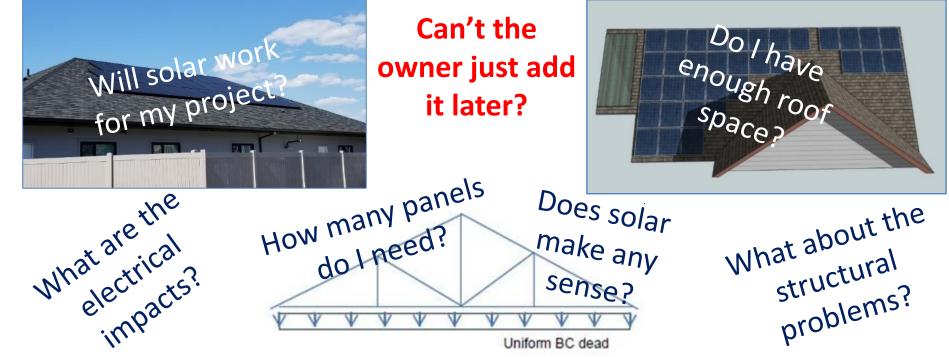
Demonstration team

Builder: Jonathan Zerkee, Sonbuilt Custom HomesPV designer: Ben Giudici, Riverside Energy SystemsGovernment: Alastair Larwill, CanmetENERGY

Less Pain

Better Results

"Solar Ready" South Roof Peppered with Vents



© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

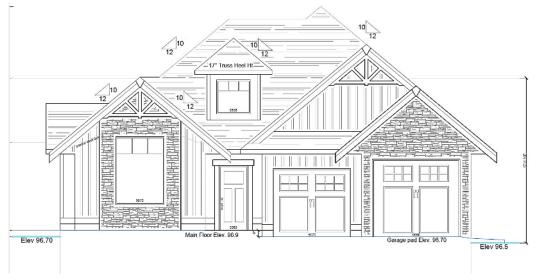
Guide Motives Reduce Risks and Confusion

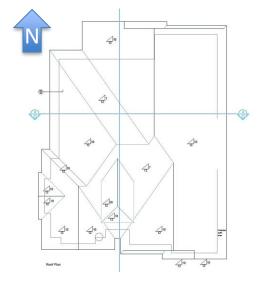
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

The Case Study Project

Sonbuilt Custom Homes

The Vine Lot 6 Show Home


© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020



Canada

Natural Resources **Ressources naturelles** Canada

The Case Study Home Show home for a new development

South Elevation

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Let's work through NRCan's new guide...

Enable builder design team and PV designer to work together to...

- Make 10 key decisions during IDP
- Improve coordination during build ۲
- Enable the builder to confidently champion the use of PV

Netural Resources Tessources naturales Canada Canada

PLANNING & DECISION GUIDE FOR SOLAR PV SYSTEMS

edure for Solar Designers, Builders and their Design Teams to Quickly Define Solar PV Requirements

beveloped by Natural Restances Canada/ Local Energy Efficiency Partnerships (LEEP) team IRCan LEEP RINCand Canada An

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

APPENDIX B: Solar PV System Integration Worksheet PART I: Pre-Design Considerations

Integrated Design Team:

PV Designer:

Energy Advisor: ______ Other trades:

STEP 1: Builder's Preferred Goal for Solar PV (circle one)

Builder:

- Option 1A: PV Ready Home
- Option 1B: PV Equipped Home
- Option 1C: Net-Zero Ready (NZr) Home
- Option 1D: Net Zero (NZ) Energy Home

STEP 2: Utility Connection Options and Constraints at the Build Site (circle one and provide details)

- Option 2A: Feed-in-Tariff (FIT)
- Option 2B: Net-Metering / Net Billing
- Option 2C: Net-Zero Electric
- Option 2D: Self-Use Only
- Option 2E: No Grid Connection Available

Maximum PV Array capacity allowed for grid connection: ______kW_{peak} Maximum PV Energy Production allowed for grid connection: ______kWh/y

STEP 3: Confirm Solar PV Integration Design Requirements

Confirm general design requirements with Integrated Design Team using the STEP 1 & 2 decisions together with the provided "Planning Matrix" to secure Builder approval to proceed with the detailed design.

- A. Building Envelope: Normal build / envelope upgrades (circle one)
- B. HVAC mechanicals: Standard equipment / enhanced efficiency / all-electric (circle all that apply)
- C. PV Integration: PV-Ready installation / Full PV Installation (circle one)
- D. Battery Integration: Battery not required / Battery-Ready / Full battery installation (circle one)
- E. PV Inverter Type: Inverter not required / Grid-tied inverter / Bi-modal inverter (circle one)

PART II: Solar PV Integration Design Requirements

STEP 4: Define Annual PV Energy Production Target (circle one option and provide details)

- Option 4A: No Specified Energy Target (Max. solar array area available: ______ft² or m²)
- Option 4B: Partial energy offset Target (Nominal PV energy target: ______ kWh/y)
- Option 4C: Net-Zero Energy Usage (Nominal PV target: ______ kWh/y)

Solar photography completed to measure solar access scores and shading constraints at site: Yes / No Measured annual solar access score: %. Summer: %. Winter: %.

STEP 5: Define PV Array Location(s) and Size(s) (circle all options that apply and provide details)

- Option 5A: House-roof mounted (array area available: ______ft² or m²)
- Option 5B: Adjacent-structure, specify: ______(array area available: _____ft² or m²)
- Option 5C: Ground-mounted (array area available: ______ft² or m²)
- Solar Access and Shading Assessment for the preferred array location(s):
 - Estimated PV Energy Production: ______kWh/y)
 - o Shading (circleall that apply): External-shading: Yes / No ; Self-shading: Yes / No

Natural Resources Canada

STEP 6: Define Electrical Requirements for Solar PV (circle one option and provide details)

- Option 6A: Feed-in-Tariff (FIT) circuit breaker (C/B rating: ______A)
- Option 6B: Main-panel circuit breaker (C/B rating: ______A);
 specify main panel bus-bar rating: ______A
- Option 6C: Service Splitter with solar disconnect (solar C/B rating: _____A)

Other components: (circle all that apply)

- Other components: (circle all that apply)
 - Battery Storage Required: yes / no
 - Self-Use Controller Required: yes / no
 - Bi-modal Inverter/Charger required: yes / no

STEP 7: Structural Impacts and preferred PV Attachment Method

Structural impacts assessed and recommended attachment method defined: No / Yes (circle one)

If No, arrange for structural review with input from the PV consultant.

If Yes, indicate type of assessment: Professional structural assurances provided: Yes / No (circle one)

Truss manufacturer assurances provided: Yes / No (circle one)

and, select the preferred attachment method: (circle one option or sub-option)

- Option 7A: Flashed anchors secured into roof sub-structure: (select one sub-option)
 (i) J or U-bolts; (ii) Lag-bolts into blocking; (iii) Lag-bolts into scabs; (iv) Lag bolts into top-chords*
- Option 7B: Flashed anchors secured into roof decking
- Option 7C: Standing seam metal roof clamps
- Option 7D: Ballasted systems (only suitable on roofs with less than 7-degrees of slope)
- Other method ______(specify)
- * WARNING: DIRECT LAGGING INTO ROOF-TRUSS TOP CHORDS IS NOT RECOMMENDED BY TPIC

PART III: Preferred Solar Components & Monitoring

STEP 8: Preferred Solar Module Technology (select one)

- Option 8A: Polycrystalline-Cell Modules
- Option 8B: Monocrystalline-Cell Modules (basic)
- Option 8C: Monocrystalline-Cell, All black Modules
- Option 8D: Monocrystalline-Cell, Bi-facial Modules
- Other requirements _______(specify)

STEP 9: Preferred Inverter Technology (select one)

- Option 9A: String Inverter
- Option 9B: Optimized-String Inverter
- Option 9C: Micro-Inverter
- Option 9D: Bi-Modal Inverter
- Other requirements _______ (specify)

STEP 10: Preferred Energy Monitoring Approach (Required for NZ homes; optional for others)

- Option 10A: Monitoring not installed
- Option 10B: Basic Net-Zero Home monitoring
- Option 10C: Advanced energy monitoring of the home
- Other requirements _________(specify)

Natural Resources Canada

45

Planning and Decision Guide for Solar PV Systems

STEP 1: Builder's Preferred Goal for Solar PV

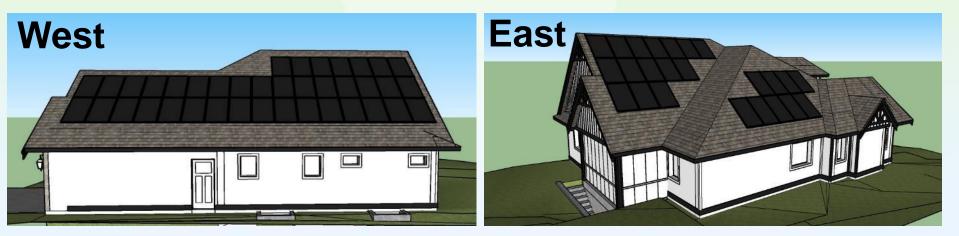
- A subdivision differentiator:
- Build cost: ~\$650,000. •

- Net Zero Ready upgrade cost: ~\$8,000 above builders' standard • practice
- Model home goals include: •
 - Achieving Net Zero if possible as a talking point
 - Supporting upsell to full Net Zero for homes in subdivision

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

STEP 1: Builder's preferred goals for Solar PV

- Option 1A: PV ready home
- Option 1B: PV equipped home
- Option 1C: Net-Zero Ready Home
- Option 1D: Net-Zero Energy Home


© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Annual Electrical Energy Use: 9000 kWh/year based on HOT2000

Net Zero	Available Roof Sections	West	East	South
	Size Available (kWp)	12	9.3	No space
PV Sizing	Generation (kWh/kWp/yr)	890	890	1020
	Annual production (kWh/yr)	10,200	8,300	N/A

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Canada

Natural Resources **Ressources naturelles** Canada

Shift to Net-Zero Ready 'PV Equipped'

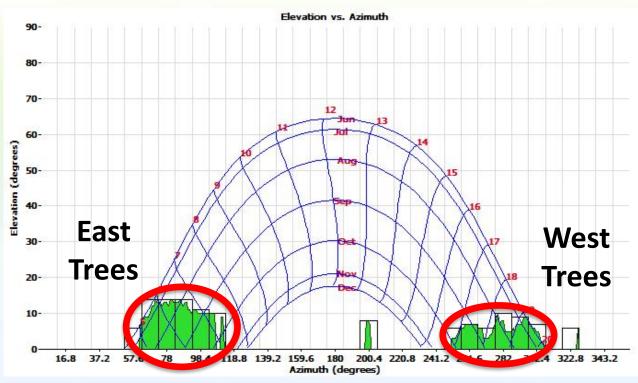
- Dormer removal allows a solar PV system of up to 3.1 kWp on direct south-facing roof harvesting up to 3350 kWh/yr. (approx. 35% of electricity needs)
- Client realizes immediate PV benefits.
- Future 6.5 kWp PV upsizing West or East roof yields Net-Zero performance ۲

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

STEP 2: Utility Connection Options and Constraints at the Build Site

- Option 2A: Feed-in-Tariff (FIT)
- Option 2B: Net-Metering / Net Billing
 - Option 2C: Net-Zero Electric
 - Option 2D: Self-Use Only
 - Option 2E: No Grid Connection Available

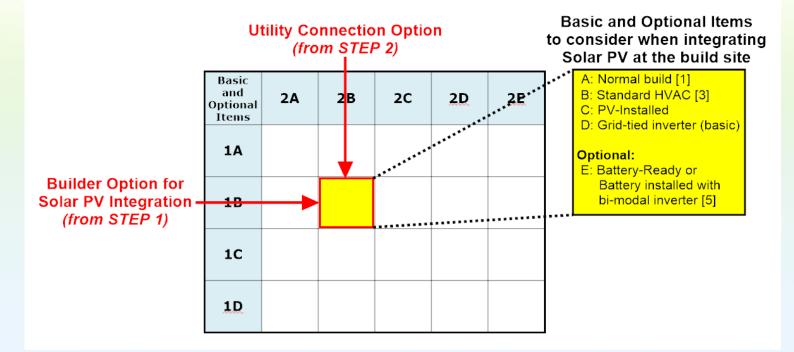
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020



Solar Site Assessment and Modeling

External shading negligible throughout year.

Essentially 100% Annual Solar Access



© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Step 3: Confirm Solar PV Integration Design Requirements (Planning Matrix)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Bas	sic and	Electrical Utility Grid Connection Option (from STEP 2)					
Optional Design Requirements				2C: Net-Zero Electric Connection	2D: Self Use Only Connection	2E: No Grid Connection Available [6]	
(from STEP 1)	1A: Solar-Ready Home	A: Normal build [1] B: Standard HVAC [3] C: PV-Ready D: No Inverter E: No Battery	A: Normal build [1] B: Standard HVAC [3] C: PV-Ready D: No Inverier Optional: E: Battery-Ready	A: Normal build [1] B: Standard HVAC [3] C: PV-Ready D: No Inverter Optional: E: Battery-Ready	A: Normal build [1] B: Standard HVAC [3] C: PV-Ready D: No Inverter E: Battery-Ready	A: Normal [1] or enhanced build [2] B: Standard [3], enhanced [2] or all-electric HVAC [4] C: PV-Ready D: Off-grid inverter-charge E: Battery-installed	
Solar PV Integration (from STEP	1B: Solar Equipped Home	A: Normal build [1] B: Standard HVAC [3] C: PV-Installed D: Grid-tied inverter E: No Battery	A: Normal build [1] B: Standard HVAC [3] C: PV-Installed D: Grid-tied inverter Optional: E: Battery-Ready or Battery installed with bi-modal inverter [5]	A: Normal build [1] B: Standard HVAC [3] C: PV-Installed D: Grid-tied inverter Optional: E: Battery-Ready or Battery installed with bi-modal inverter [5]	A: Normal build [1] B: Standard HVAC [3] C: PV-Installed D: Grid-tied inverter with self-use controller E: Battery installed Optional: E: Bi-modal inverter [5]	A: Normal [1] or enhanced build [2] B: Standard [3], enhanced [2] or all-electric HVAC [4] C: PV-Installed D: Off-grid inverter-charge E: Battery-installed	
Builder's Preferred Option for S	1C: Net-Zero- Ready Home	A: Enhanced build [2] B: Enhanced HVAC [2] C: PV-Ready D: No inverter E: No Battery	A: Enhanced build [2] B: Enhanced HVAC [2] C: PV-Ready D: No Inverter Optional: E: Battery-Ready	A: Enhanced build [2] B: All-electric HVAC [4] C: PV-Ready D: No Inverter Optional: E: Battery-Ready	A: Enhanced build [2] B: Enhanced HVAC [2] C: PV-Ready D: No Inverter E: Battery-Ready	A: Enhanced build [2] B: Enhanced HVAC [2] C: PV-Ready D: Off-grid inverter-chan E: Battery-installed	
Builder's Prefe	1D: Net-Zero Energy Home	A: Enhanced build [2] B: Enhanced HVAC [2] C: PV-Installed D: Grid-tied inverter E: No Battery	A: Enhanced build [2] B: Enhanced HVAC [2] C: PV-Installed D: Grid-tied inverter (testc) Optional: E: Battery-Ready or Battery installed with bi-modal inverter [5]	A: Enhanced build [2] B: All-electric HVAC [4] C: PV-Installed D: Grid-fied inverter (basic) Optional: E: Battery-Ready or Battery installed with bi-modal inverter [5]	DIFFICULT TO ACHIEVE Consider Option 1B: Solar-Equipped Home, with energy-efficiency upgrades [2] as an alternative	DIFFICULT TO ACHIEVE Consider Option 1B: Solar-Equipped Home, with energy-efficiency upgrades [2] as an atternative	

۵I

APPENDIX B: Solar PV System Integration Worksheet PART I: Pre-Design Considerations

Integrated Design Team:

Builder:	Sonbuilt Custom Homes	Energy /

Advisor: Capital Home Energy

PV Designer: Riverside Energy Systems

Other trades:

STEP 1: Builder's Preferred Goal for Solar PV (circle one)

- **Option 1A: PV Ready Home**
- Option 1B: PV Equipped Home
- Option 1C: Net-Zero Ready (NZr) Home
- Option 1D: Net Zero (NZ) Energy Home

STEP 2: Utility Connection Options and Constraints at the Build Site (circle one and provide details)

- Option 2A: Feed-in-Tariff (FIT)
- Option 2B: Net-Metering / Net Billing
- Option 2C: Net-Zero Electric
- Option 2D: Self-Use Only
- Option 2E: No Grid Connection Available

Maximum PV Array capacity allowed for grid connection: 100 **kW**neak Maximum PV Energy Production allowed for grid connection: NA kWh/y

STEP 3: Confirm Solar PV Integration Design Requirements

Confirm general design requirements with Integrated Design Team using the STEP 1 & 2 decisions together with the provided "Planning Matrix" to secure Builder approval to proceed with the detailed design.

- A. Building Envelope: Normal build / envelope upgrades (circle one)
- B. HVAC mechanicals: Standard equipment / enhanced efficiency / all-electric (circle all that apply)
 - **PV Integration:** PV-Ready installation / Full PV Installation 3.1 kWp
- D. Battery Integration: Battery not required / Battery-Ready / Full battery Installation (circle one)
- E. PV Inverter Type: Inverter not required Grid-tied inverter Bi-modal inverter (circle one)

© Her Majesty th

Canada

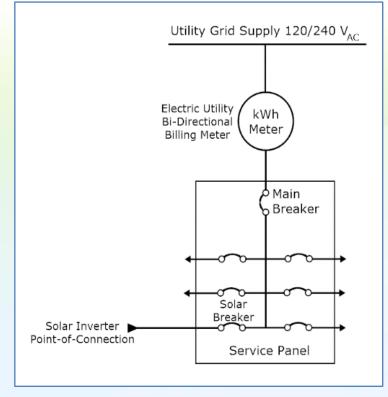
C.

Step 4: Annual PV Energy Production Target

- Annual Energy Offset Target: per EA modelling for NZe = 9000 kWh/yr
- South facing roof capacity required ≈ 9 kWp
- Projected PV Energy Production for 3.1 kWp Solar Equipped System: ≈ 3350 kWh/year
- Solar PV targets **35-37%** of annual electricity use.

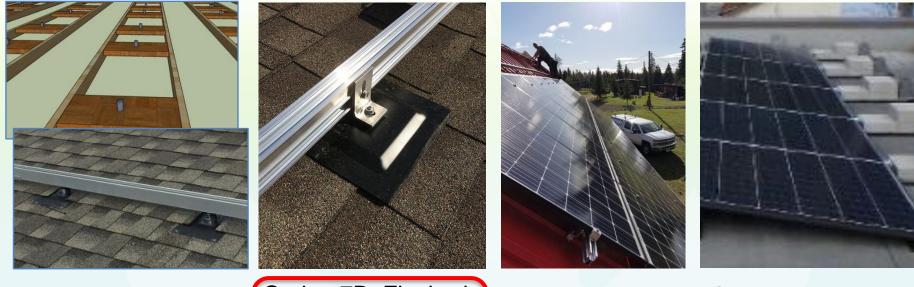
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Step 5: Solar PV Array Location and Size


- **Option 5A: House-roof mounted arrays**
- **Option 5B: Adjacent structure mounted arrays**
- **Option 5C: Mounting on walls or railings**
- **Option 5D: Ground mounted arrays**

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Step 6: Electrical Impacts and Point-of-Connection


- 3.1 kWp system easily accommodated by 200A main service panel bus capacity.
- Solar PV P-O-C via 20A 2-P solar CB in main service panel

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Step 7: Structural Impacts and PV Attachment

Option 7A: Flashed anchors secured into roof sub-structure

Vatural Resources

Canada

Option 7B: Flashed anchors secured into roof decking

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Ressources naturelles

Canada

Option 7C: Standing seam metal roof clamps Option 7D: Ballasted systems on flat roofs

APPENDIX B: Solar PV System Integration Worksheet

PART II: Solar PV Integration Design Requirements

STEP 4: Define Annual PV Energy Production Target (circle one option and provide details)

- Option 4A: No Specified Energy Target (Max. solar array area available: ______ ft² or m²) .
- Option 4B: Partial energy offset Target (Nominal PV energy target: 3350 kWh/y)
- Option 4C: Net-Zero Energy Usage (Nominal PV target: kWh/y)

Solar photography completed to measure solar access scores and shading constraints at site: Yes / No Measured annual solar access score: <u>100</u>%. Summer: <u>100</u>%. Winter: <u>99</u>%.

STEP 5: Define PV Array Location(s) and Size(s) (circle all options that apply and provide details)

- Option 5A: House-roof mounted (array area available: 220 ft² or m²) South roof per dormer removal •
- Option 5B: Adjacent-structure, specify: _____ (array area available: _____ ft² or m²)
- Option 5C: Ground-mounted (array area available: ft² or m²)
- Solar Access and Shading Assessment for the preferred array location(s):
 - Estimated PV Energy Production: 3350 kWh/v)
 - Shading (circle all that apply): External-shading: Yes No; Self-shading: Yes / No 0

Minor from gables

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

STEP 6: Define Electrical Requirements for Solar PV (circle one option and provide details)

- Option 6A: Feed-in-Tariff (FIT) circuit breaker (C/B rating: A)
- Option 6B: Main-panel circuit breaker (C/B rating: 20 A); . specify main panel bus-bar rating: 200 A
- Option 6C: Service Splitter with solar disconnect (solar C/B rating: A)

Other components: (circle all that apply)

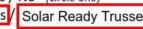
- Battery Storage Required: yes / no .
- Self-Use Controller Required: yes / no
- Bi-modal Inverter/Charger required: yes, no

STEP 7: Structural Impacts and preferred PV Attachment Method

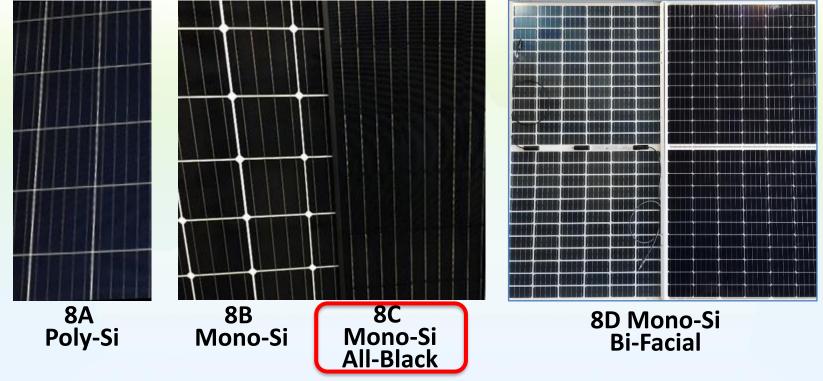
Structural impacts assessed and recommended attachment method defined: If No, arrange for structural review with input from the PV consultant.

If Yes, indicate type of assessment: Professional structural assurances provided: Yes / No (circle one)

Truss manufacturer assurances provided: Yes / Solar Ready Trusses


and, select the preferred attachment method: (circle one option or sub-option)

- Option 7A: Flashed anchors secured into roof sub-structure: (select one sub-option) (i) J or U-bolts; (ii) Lag-bolts into blocking; (iii) Lag-bolts into scabs; (iv) Lag bolts into top-chords*
- Option 7B: Flashed anchors secured into roof decking
- Option 7C: Standing seam metal roof clamps
- Option 7D: Ballasted systems (only suitable on roofs with less than 7-degrees of slope)
- Other method (specify)


WARNING: DIRECT LAGGING INTO ROOF-TRUSS TOP CHORDS IS NOT RECOMMENDED BY TPIC

Step 8: Preferred Solar Module Technology

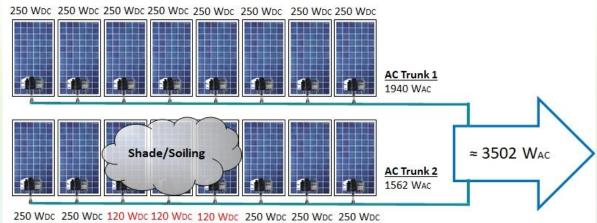
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Step 9: Preferred Solar Inverter Technology

Converts DC power to AC power

- String Inverter
- Optimized String Inverter
- Micro-Inverter
- Bi-Modal Inverter battery based systems

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020



Canada

Vatural Resources Ressources naturelles Canada

Step 9: Preferred Solar Inverter Technology

- PV consultant advised using micro-inverters.
 - Cost effective method for smaller PV systems
 - Shade tolerant, easily expandable
 - Provides module level monitoring.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Step 10: Energy Monitoring Technology

Daily System Energy Production

Daily System Power Output

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Step 10: Energy Monitoring Technology

Daily Individual Module Energy Production

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

APPENDIX B: Solar PV System Integration Worksheet

PART III: Preferred Solar Components & Monitoring

STEP 8: Preferred Solar Module Technology (select one)

- **Option 8A: Polycrystalline-Cell Modules** .
- Option 8B: Monocrystalline-Cell Modules (basic)
- Option 8C: Monocrystalline-Cell, All black Modules .
- Option 8D: Monocrystalline-Cell, Bi-facial Modules
- Other requirements (specify)

STEP 9: Preferred Inverter Technology (select one)

- **Option 9A: String Inverter** .
- **Option 9B: Optimized-String Inverter** .
- Option 9C: Micro-Inverter .
- **Option 9D: Bi-Modal Inverter** .
- Other requirements (specify)

STEP 10: Preferred Energy Monitoring Approach (Required for NZ homes; optional for others)

- Option 10A: Monitoring not installed .
- Option 10B: Basic Net-Zero Home monitoring .
- Option 10C: Advanced energy monitoring of the home .
- Other requirements (specify) .

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

PV Installation Specifications

- 3.1 kWp Solar PV Array (minimum) 1.
 - 10 x 310Wp (min) XXXX All-Black 60 cell mono modules or approved equivalent
 - South roof flush mounted per IFC drawings using AI solar PV racking (XXXX or approved equivalent) and SS fasteners.
 - Flashed anchors (XXXX or approved equivalent) attached as per IFC drawings solar PV attachment structural notes.

2. Micro-Inverter System

- XXXX model XXXX micro-inverters (or approved equivalent), 1 per pair of solar modules
- Brand specific trunk cables, AC combining panel, and lockable DG disconnection means.
- Brand specific system monitoring gateway, with web-based monitoring portal providing monitoring granularity to the module level

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Hand Off to Construction

- Show solar PV clearly on IDP and IFC drawings
- Ensure service providers are aware how their contributions are affected by and impact solar PV.
- Meetings with site supervisors.
- Adjust construction schedule to integrate solar installation steps.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Thank you!

Please discuss with us...

- Comments and questions. 1.
- How can we further encourage use of the guide? 2.
- Finding support with using the guide. 3.

https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-homes/local-energy-efficiencypartners/leep-technology-guides/17346

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2020

Our next webinar

Feb 25 from 1:30-2:30 ET Discover the New Generation of Spray Foam

Presented by Chris Janzen, Field Applications and Warranties Manager, PM North America, BASF Canada

Register: chba.ca/NZwebinars

Building codes, product standards, and regulatory requirements are changing for spray foam. This webinar will examine the latest industry updates and how this impacts your projects. Join us to learn how spray foam's innovative applications can make your upcoming project code compliant, energy efficient and green.

Join the webinar to:

- Gain knowledge on the new generation of spray foam using HFO blowing agents
- Learn about the steps required for your upcoming new build project
- Ensure you're using a certified installer to be code compliant
- Uncover new applications of spray foam including WALLTITE CM01 as a radon barrier

Chris Janzen has been with BASF Canada for over 19 years covering various aspects of technical support, product development, market development, and customer training for the spray polyurethane foam business. His experience has brought him exposure to residential, commercial, and roofing applications in Canada and abroad. He has recently taken on the role as Field Application & Warranty Manager for BASF in North America and is co-chair for the Spray Foam Coalition's Canada Work Group.

Contact the CHBA Net Zero Team

Brett Cass Coordinator Net Zero Home Labelling Program 613.230.3060 x233 brett.cass@chba.ca

Marie Hanchet Project Manager Net Zero Energy Housing 613.230.3060 x263 marie.hanchet@chba.ca

Sonja Winkelmann Director Net Zero Energy Housing 613.230.3060 x235 sonja.winkelmann@chba.ca

These consultants would like to help you trial the new NRCan PV Decision Guide

The consultants listed below expressed interest in helping builders use the *Planning and Decision Guide for Solar PV Systems* to develop solar designs for their homes. They found out about the guide through a web meeting organized by Canadian Renewable Energy Association (CanREA) and have each offered their support to builders in using the guide's Solar PV System Integration Worksheet (Appendix B) to document key decisions as part of their designs.

IMPORTANT NOTE: The consultants on this list have self-identified. They have not been pre-qualified by the CHBA. The CHBA Net Zero Council is exploring ways to qualify PV professionals so that builders and renovators can more easily find PV professionals that meet minimum skill and experience thresholds.

CanREA: https://renewablesassociation.ca/

Guide: <u>https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-homes/local-energy-efficiency-partners/leep-technology-guides/17346</u>

Company	Contact	Email	Phone	Region
Sunly Energy Corp.	Shamor Paul	shamor@sunly.ca	416-786-1692	Charlottetown, PEI
Novatec Solar	Justin Burns	justin.burns@novatecsolar.ca	506-230-3854	Dartmouth, NS
Skylit Energy Solutions	Amanda Brulé	<u>abrule@skylit.ca</u>	902-812-1050	Kentville, NS
Execon Roofing and Solar	Chris Meechan	chris@execonconstruction.com	613-868-7047	Ottawa, ON
Bluewater Energy	Wil Beardmore	wbeardmore@bluewaterenergy.ca	519-827-7348	Guelph, On
HES PV Ltd.	Daniel Partridge	projects@hespv.ca	1-866-258-0110	ON, AB, BC
Rock paper sun Ltd.	Phil Foster	phil@rockpapersun.com	306-880-2700	Saskatoon, SK
Evolsolar	Paul Heebner	paul.heebner@evolsolar.com	306-640-2429	Regina, SK
Go Solar Sask Ltd.	Kyle Parker	kyle@gosolarsask.ca	306-537-9515	Lumsden, SK
Solar Optix Energy Services	Jacquie Nordquist	jacquie@solaroptix.ca	587-691-1432	Lethbridge, AB
Empower Energy Corp.	Jim Jacobsen	jim@empowerenergy.ca	250-254-2555	Creston, BC
Riverside Energy Systems	Ben Giudici	ben@riversideenergy.ca	778-220-2496	Kamloops, BC
Fast-Rack	Richard Fex	project@fast-rack.ca	250-999-5830	Victoria, BC