Welcome to todays CHBA Net Zero Webinar!

Brett Cass Coordinator Net Zero Home Labelling Program 613.230.3060 x233 brett.cass@chba.ca

Marie Hanchet Project Manager Net Zero Energy Housing 613.230.3060 x263 marie.hanchet@chba.ca

The CHBA Net Zero Team

Sonja Winkelmann Director Net Zero Energy Housing 613.230.3060 x235 sonja.winkelmann@chba.ca

Housekeeping

- This webinar is being recorded. CHBA Members can access the Net Zero webinar archive at <u>www.chba.ca/NZwebinars</u>. (Recording + slide deck.)
- You will be in "listen-only" mode for the duration of the webinar.
- After the presentation we will have time for questions. Please use the question section of the dashboard throughout the webinar and they will be relayed to the presenter(s).
- You can change your screen view by clicking on the view icon in the top right corner and by dragging the slider between sections to make the slideshow/webcams smaller/larger.

The 2021 Net Zero Webinar Series is brought to you by our Net Zero Council Silver Sponsor OWENS CORNING

www.OwensCorning.ca

MEET THE OWENS CORNING BUILDING SCIENCE TEAM

Contact the Building Science Team Member in your area for information on products or solutions

RESIDENTIAL BUILDER EVENTS

Lunch & Learn Seminar available on topics such as: • Building Net Zero Energy/Net Zero Energy Ready Homes • High Performance Building Enclosure Systems

ARCHITECT DESIGN EVENTS

- Lunch & Learn Seminar available on topics such as:
- Principles of Acoustics and new ASTC Code Requirements
- Eliminating Thermal Bridges and Online Design Tools
- High Performance Building Envelope Solutions

ONTARIO Emie Lee, P. Eng Technical Sales Manager, Ontario ernie.lee@owenscorning.com 1.833.670.0208

QUEBEC & ATLANTIC CANADA Salvatore Ciarlo, P.Eng Architectural Solutions & Technical Services Manager, Canada salvatore.cianlo@ovenscorning.com 1.800.504.8294

WESTERN CANADA Luis Faria, B.Eng, PMP, CMgr MCMI Technical Sales Manager, Western Canada luis.faria@owenscorning.com 1.833.258.5299

THE PINK PANTHER* & @ 1964-2020 Metro-Goldwyn-Mayer Studios Inc. All Rights Reserved. The colour PINK is a registered trademark of Owens Corning. @ 2020 Owens Corning. All Rights Reserved.

Thank you to our NZC Bronze Sponsor Members

Our Next Webinar

August 26 from 10:30-11:30 PT / 1:30-2:30 ET Using Diversified Pathways to Reach GHG Reduction Targets

Presented by: Benjamin Nishi, Regional Energy Solutions Manager, Fortis BC

In 2019, FortisBC commissioned Guidehouse, a well-regarded consultancy with expertise in both energy and environmental issues, to study how a diversified pathway that utilizes natural gas and electric systems could perform using many of the actions Fortis BC is taking today to pursue their 30BY30 target (to reduce their customers' emissions by 30% by 2030). These actions include:

- Investing in low carbon transportation
- Increasing the supply of Renewable Gas for Fortis BC customers
- Greater investment in energy efficiency programs and initiatives

Join CHBA Director of Net Zero Energy Housing Sonja Winkelmann and Ben Nishi, Regional Energy Solutions Manager at FortisBC, as they explore the Pathways to 2050 Report, and show how a pathway of diversified energy systems can achieve BC's 2050 GHG emissions target.

Register at chba.ca/NZwebinars

Today's Webinar

July 22 from 10:30-11:30 PT / 1:30-2:30 ET Ducted vs. Ductless? How We're Settling the HVAC Debate

Presented by:

- Sonny Pirrotta, National Sales Manager- HVAC Solutions, Life and Devices Solutions Division, Panasonic Canada Inc., and
- Greg Hussey, President & Owner, Karwood

Panasonic, in partnership with Karwood Ontario, is undertaking an exciting new project that examines the capital and operating costs of a traditional HVAC ducted system vs. a ductless air-source heat pump (ASHP) installation in a typical single storey home. Two identically designed and constructed houses will be built, the first with a traditional furnace and AC unit, and the other with a ductless ASHP. Capital costs of both installations will be examined, and an energy model will compare the operating costs of both houses over a 10-year period.

In this webinar, you will:

- Learn about this innovative project in more detail
- Understand the advantages of a ductless solution compared to a traditional HVAC system
- Learn more about the Panasonic products involved in the project

Recording & slide deck will be available at chba.ca/NZwebinars

Project Background

- We have been building in NL for 20 years
- Typical HVAC system in NL is baseboard electric with no AC
- Lately we are seeing a move to heat pumps and mini splits
- Moved into the ON market 2 years ago

Equipment Designs

Traditional Ducted Home

- ML296UH045XV36B Lennox gas furnace
- 13ACX Lennox air conditioner
- Gas water heater
- HRV

Panasonic Ductless Home

- CS-E12RKUAW multi-zone heat pump indoor unit
- CS-ME5RKUA multi-zone heat pump indoor unit
- CU-4E24RBU-5 multi-zone heat pump outdoor unit
- FV-10VEC1 Intelli-Balance[™] 100 ERV
- FV-11VH2 WhisperWarm[™] ventilation fan
- Swidget control switches
- Heat pump hot water heater

Panasonic

Increased Comfort at a Reduced Cost

- Control the temperature of each room using thermostat controls for each ductless unit for maximum comfort
- Enjoy 4 different temperature zones instead of 1 zone for the whole house
- Lower operating costs by reducing heating/cooling in rooms that are unoccupied

Panasonic Solutions & Technology

- Panasonic's high-quality products with cutting-edge technology create complete IAQ solutions that are ahead of Canada's building code
- WhisperWarm[™] ventilation fan acts as a code compliant back-up heat system
- Flexible solutions create added comfort and value for customers

Enorgy Model		Performance Opt	ormance. Better Bottom Line. imization Exercise	
Energy Model			ce, St. Thomas - The Oxford ne Storey 12.8% Window / Wall Ratio	
		OBC SB12 Code Package A1	Low Carbon (Heat Pump Heat and Hot Water)	
	Design Heat Loss @ -20°C (Btu/h)	18,000	18,000	
	Design Heat Gain @ 31°C (Btu/h)	13,000	12,000	
	Primary Space Heating	• 31%	20%	
в	Secondary Space Heating	0%	= 1%	
c	Primary DHW Heating	20%	9%	
D	Secondary DHW Heating	= 0%	= 0%	
E	Lights & Appliances	= 38%	= 58%	
F	HRV and Fans	• 3%	3 %	
G	Air Conditioner	= 8%	1 0%	
	Total Energy Consumption (GJ)	67	44	
	Energy Consumption Reduction (vs. OBC SB12 Code Package A1 - 67 GJ)	N/A	23%	
	Estimated operational GHG emissions (CO2e) (tonnes/year)	2.12	0.46	
	Est. Natural Gas Consumpton in GJ	33.9	0.0	
	Est. Electricity Consumption in GJ	33.5	43.8	
	Est. Natural Gas Consumpton (m3)	909	0	
	Est. Electricity Consumption (kWh)	9299	12177	
	Est. Annual Operating Expenses - 2021 (\$/yr)	\$2,293	\$2,166	
	Est. Annual Operating Expenses - 2022 (\$/yr)	\$2,315	\$2,171	
	Est. Annual Operating Expenses - 2026 (\$/yr)	\$2,442	\$2,199	
	Est. Annual Operating Expenses - 2030 (\$/yr)	\$2,569	\$2,227	
	Est. Annual Natural Gas Cost	\$487	\$0	
	Est. Annual Electricity Cost	\$1,722	\$2,148	
	Carbon Cost 2021 - \$40/tonne	\$85	\$19	
	Carbon Cost 2022 - \$50/tonne	\$106	\$23	
	Carbon Cost 2026 - \$110/tonne Carbon Cost 2030 - \$170/tonne	\$233 \$360	\$51 \$79	Panasonic
	Carbon Cost 2030 - \$170/tonne	\$300	\$19	Γαι ιασνί ΙΙν

Operating Costs

		Pump Heating	eat P	Carbon (He	Low	Code (Gas	ling	urrent Build	0			
Annual		& HW)			Heat & HW)							
Savings		Annual		nual Cost	An	Annual		nnual Cost	Α			
Savings	\$ 1,722 - \$ 2,148 - Savin			ricity	Annual Electr							
		-			\$			487	\$		ıral Gas	Annual Natur
127	\$	2,166	\$	18.60	\$	2,293	\$	84.66	\$	per tonne	\$ 40.00	2021
144	\$	2,171	\$	23.25	\$	2,315	\$	105.83	\$	per tonne	\$ 50.00	2022
169	\$	2,178	\$	30.22	\$	2,346	\$	137.58	\$	per tonne	\$ 65.00	2023
193	\$	2,185	\$	37.20	\$	2,378	\$	169.33	\$	per tonne	\$ 80.00	2024
218	\$	2,192	\$	44.17	\$	2,410	\$	201.08	\$	per tonne	\$ 95.00	2025
243	\$	2,199	\$	51.15	\$	2,442	\$	232.83	\$	per tonne	\$ 110.00	2026
268	\$	2,206	\$	58.12	\$	2,473	\$	264.58	\$	per tonne	\$ 125.00	2027
292	\$	2,213	\$	65.09	\$	2,505	\$	296.33	\$	per tonne	\$ 140.00	2028
317	\$	2,220	\$	72.07	\$	2,537	\$	328.08	\$	per tonne	c \$155.00	2029
342	\$	2,227	5	79.04	\$	2,569	\$	359.83	\$	per tonne	\$ 170.00 \$ 185.00	2030
367	\$	2,234	\$	86.02	\$	2,600	\$	391.58	\$	per tonne	\$ \$ 185.00	2031
391	\$	2,241	\$	92.99	\$	2,632	\$	423.32	\$	per tonne	\$ 200.00	2032
416	\$	2,248	\$	99.97	\$	2,664	\$	455.07	\$	per tonne	\$ 215.00	2033
441	\$	2,255	\$	106.94	\$	2,696	\$	486.82	\$	per tonne	\$ 230.00	2034
466	\$	2,262	\$	113.91	\$	2,727	\$	518.57	\$	per tonne	\$ 245.00	2035
491	\$	2,269	\$	120.89	\$	2,759	\$	550.32	\$	per tonne	\$ 260.00	2036
515	\$	2,276	\$	127.86	\$	2,791	\$	582.07	\$	per tonne	\$ 275.00	2037
540	\$	2,282	\$	134.84	\$	2,823	\$	613.82	\$	per tonne	\$ 290.00	2038
565	\$	2,289	\$	141.81	\$	2,854	\$	645.57	\$	per tonne	\$ 305.00	2039
590	\$	2,296	\$	148.79	\$	2,886	\$	677.32	\$	per tonne	\$ 320.00	2040

Capital Costs

Ductless Mini-Split vs. Traditional Furnace & Air Conditioner					
Item					
System install					
Install bulkheads - drywall and taped	b				
Paint bulkheads					
3-5 Days less on schedule					
No gas connection required					
Less exterior penetrations to seal					
No duct cleaning before closing					
No covering ducts during costs					
No backframing for cut studs etc.					
No duct layout meeting					
No design meeting to layout bulkhe	ads				
Savings					
Finished Basement	\$5,000 - \$7,000				
Unfinished Basement	\$2,000 - \$4,000				

Benefits of a Ductless System

- No more bulkheads
- No gas lines or connections to worry about and pay for
- 3-6 days savings in my build schedule
- Less penetrations in the exterior wall of the house
- Cheaper to install
- No back framing of hacked up walls and floors
- Room by room control
- Comfort in all rooms all year
- Quiet operation
- No over cooling costs to make the warmest room livable
- Helping to meet our 2050 Net Zero Emissions mandate
- Not installing equipment we know will be obsolete shortly
- AND the customer has lower operating costs

Indoor Air Quality Campaign

breathe **well**

The Only Complete Air Quality Solution™

Next Steps

Ductless solutions are energy-efficient, cost-effective and provide added comfort and value to homeowners.

- Continuously monitoring the project
- Communicating the results regularly
- Stay tuned for more!

Stay in Touch!

Sonny Pirrotta National Sales Manager - HVAC Solutions Panasonic Canada Inc. (416) 617-9504 Sonny.Pirrotta@ca.panasonic.com

Greg Hussey President & Owner Karwood <u>Greg@karwood.com</u>

Panasonic

