

Public Reviews for the 2025 National Construction Codes

Webinar #1: Proposed code changes - overview November 17 @ 12:00 - 1:00 PM ET

Webinar #2: Introducing proposed code changes for renovation November 24 @ 12:00 - 1:00 PM ET

Webinar #3: Deep dive into Part 9 energy efficiency and GHG requirements November 30 @ 12:00 - 1:30 PM ET

RESERVE YOUR SEAT!

Proposed Code Changes – Deep Dive Public Reviews 2023/2024

Frank Lohmann, Alex Bols, Alexandre Bigonesse, Brett Cass,

November 30, 2023

Canadian Home Builders' Association

Proposed Code Changes – Deep Dive Public Reviews 2023/2024

Frank Lohmann, Alex Bols, Alexandre Bigonesse, Brett Cass,

November 30, 2023

Canadian Home Builders' Association

Proposed Code Changes Deep Dive

- 1. Where we are in the code process
- 2. Deep Dive on Energy Efficiency and GHG Emissions
 - Prescriptive Trade Off Method "Points" (20 min)
 - Prescriptive Tier 5 "Packages" (10 min)
 - Solar Heat Gain / Peak Cooling (10 min)
 - Greenhouse Gas Emissions (20 min)
 - Heat Pumps (10 min)
- 3. How to Submit Comments for Public Review

024 Webinars:

- Airtightness from ACH to NLR
- New Energy Use Metrics
- ... more on:
 - Prescriptive Methods...
 - GHG Emissions...

1. WHERE WE ARE IN THE CODE PROCESS

YOU ARE

Codes Timelines	Committee Deadline	Public Review Opens	Public Review Closes
Fall 2023	June 12, 2023	October 23, 2023	December 18, 2023
Winter 2024	October 2, 2023	February 20, 2024	April 29, 2024
Fall 2024 (Ref'd Docs)	June 17, 2024	October 21, 2024	December 16, 2024
Code Publication		Planned for December	2025
P/T Code Adoptions	Plann	ed for 18 months after	publication

Canadia Home Builders Associatio

6

PRESCRIPTIVE TRADE-OFF – "POINTS"

- 1. Trade-Off Point Targets (PCF 1890) $\rightarrow \rightarrow \rightarrow$
- 2. Points for Energy Conservation Measures (ECM)
 - Drain Water Heat Recovery (PCF 1835)
 - Gas-fired Furnaces (PCF 1836)
 - Airtightness (PCF 1888)
 - Fenestration & Doors (PCF 1889)
 - Building Envelope (PCF 1923)
 - Oil Furnaces (PCF 2000)
 - Air-source heat pumps ASHP (PCF 2001)
- 3. Interpolation (PCF 1834)

Energy Conservation Points	T1	T2	Т3	T4	T5
Min. Total Points	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Min. Building Envelope Points	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Screenshot: CHBA Webinar June 2022 Tiered Energy Codes

PRESCRIPTIVE TRADE-OFF – "POINTS"

Home Builders

Associati

Canadian Home Builders'

Prescriptive Path 9.36.8.

Example

- 2000 ft² single-family home in Edmonton (w. conditioned basement, Climate Zone 7B)
- Comply with tier 1 and collect 10 points to comply with tier 2

Energy-Efficiency Changes

Category	Specification	Points
category		Fonts
Effective R-value of above ground walls	RSI 3.08 m ² K/W (~R17.5)	0
Effective R-value of below ground walls	RSI 2.98 m ² K/W (~R16.9)	0
Tested Airtightness	2.0 ACH (AL-2A)	6.1
U-value or ER of fenestration and doors	U-value 1.44	0
Ventilation equipment	SRE 60% (HRV or ERV pre-requisite)	0.8
Service water heating equipment	Gas fired storage type EF=0.8	3.1
Conditioned volume of building	780m ³	0
		< poi

PCF 1888 corrects points for airtightness

12

Service Water Heating Equipment (<u>PCF 1835</u>)

• Existing Code: ECM Points for Water Heaters

Canadian Association

Home Builders'

Service Water Heating Equipment (<u>PCF 1835</u>)

Additional ECM Points for Drain Water Heat Recovery

Heat Recovery	Zone 4	Zone 5	Zone 6	Zone 7A	Zone 7B	Zone 8
<u>Efficiency</u> of DWHR Equipment		Energ	gy Conse	rvation P	oints	
<u>30%</u>	<u>2.4</u>	<u>1.9</u>	<u>1.9</u>	<u>1.9</u>	<u>1.9</u>	<u>1.5</u>
<u>40%</u>	<u>3.1</u>	<u>2.4</u>	<u>2.4</u>	<u>2.4</u>	<u>2.4</u>	<u>2</u>
<u>50%</u>	<u>3.7</u>	<u>2.9</u>	3	<u>2.9</u>	<u>2.9</u>	<u>2.4</u>
<u>60%</u>	<u>4.4</u>	<u>3.4</u>	<u>3.5</u>	<u>3.5</u>	<u>3.4</u>	<u>2.8</u>
<u>70%</u>	<u>5</u>	<u>3.9</u>	4	<u>4</u>	<u>3.9</u>	<u>3.2</u>
<u>75%</u>	<u>5.4</u>	<u>4.1</u>	<u>4.3</u>	<u>4.2</u>	<u>4.2</u>	<u>3.4</u>

HRVs & Gas-fired Furnaces (PCF 1836)

• Existing code: ECM Points for HRVs

HRVs & Gas-fired Furnaces (PCF 1836)

• <u>Newly proposed: points for Gas-fired furnaces</u>

<u>Annual Fuel</u> <u>Utilization</u>	Zone 4	Zone 5	Zone 6	Zone 7A	Zone 7B	Zone 8
<u>Efficiency</u> (AFUE)		Ene	ergy Conse	rvation Poi	nts	
<u>96%</u>	<u>0.4</u>	<u>0.4</u>	<u>0.4</u>	<u>0.5</u>	<u>0.5</u>	<u>0.5</u>
<u>98%</u>	<u>1.1</u>	<u>1.3</u>	<u>1.3</u>	<u>1.4</u>	<u>1.5</u>	<u>1.6</u>

_

Canadia Associatio

Home Builders

Points for Oil-fired Furnaces (PCF 2000)

• Proposed new points

Type of	Min.	Zone 4	Zone 5	Zone 6	Zone 7A	Zone 7B	Zone 8
Equipment	Performance		Energ	gy Conse	rvation P	oints	
<u>Oil-fired</u>	<u>87% AFUE</u>	<u>1.2</u>	<u>1.4</u>	<u>1.4</u>	<u>1.5</u>	<u>1.6</u>	<u>1.7</u>
<u>warm air</u> <u>furnaces</u>	<u>92% AFUE</u>	Ξ	Ξ	=	<u>5.4</u>	<u>5.5</u>	<u>5.9</u>

- Values for milder climate zones are coming
- No points for more efficient oil furnaces
- Impact of GHG emission requirements

Targets	T1	T2	Т3	T 4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Air Source Heat Pumps (PCF 2001 – Space Heating)

• Lookup points for heat pumps Table 9.36.8.9.-B

<u>Table [9.36.8.9B]</u> Energy Conservation Measures and Points for Air-Source Heat Pumps Forming Part of Sentence 9.36.8.9.(5)									
Energy Conservation Measures for Air Source Heat Pumps – Heating Seasonal Performance Factor for Region V, HSPF2 V ⁽¹⁾	<u>Minimum Air</u> Source Heat Pump <u>Capacity/Load</u> <u>Fraction</u> ⁽²⁾	Locati Zone <u>4 <</u>	<u>3000</u> to	Celsius Zone <u>6</u> <u>4000</u> to	Degre Zone <u>7A</u>	e-Days Zone 7B 6000 to	Zone <u>8 ≥</u>		
		Energ	y Cons	ervatio	on Poin	ts			
<u>5.2</u>		<u>28.6</u>	<u>22.9</u>	<u>20.5</u>	<u>18.4</u>	<u>19.9</u>	<u>10.7</u>		
<u>6.7</u>		<u>30.8</u>	<u>25.3</u>	<u>22.9</u>	<u>20.6</u>	<u>22.2</u>	<u>12.3</u>		
<u>7.6</u>	<u>60%</u>	<u>32.1</u>	<u>26.8</u>	<u>24.4</u>	22.0	<u>23.6</u>	<u>13.3</u>		
<u>8.3</u>		<u>33.1</u>	<u>28.0</u>	<u>25.6</u>	<u>23.0</u>	<u>24.7</u>	<u>14.0</u>		
9.6		<u>35.0</u>	30.1	<u>27.7</u>	<u>24.9</u>	<u>26.7</u>	15.4		

<u>Calculate points</u> for **heat pumps Table 9.36.8.9.-C**

Canadiar Home Builders' Association

<u>Corrected</u> ECM points for Airtightness

• More accurate and correct! points for airtightness in <u>PCF 1888</u>

Ene	ergy Conservati	on Measures ar	nd Points for Air	tightness - Det	ached homes	
Detached	Zone 4	Zone 5	Zone 6	Zone 7a	Zone 7b	Zone 8
2.5 ACH	-	-	-	-	-	_
2.0 ACH	2.0 2.2	3.4 — <u>3.2</u>	3.5	4 <u>.6</u> _ <u>3.8</u>	6.1 _ <u>4.3</u>	6.1 _ 4.8
1.5 ACH	4.0 <u>4.3</u>	6.7 <u>6.3</u>	7.0 <u>6.9</u>	9.3 <u>7.6</u>	12.1 8.5	12.11 9.7
1.0 ACH	5.9 6.5	10.1 _ 9.6	10.5	13.9 11.4	18.0 12.9	18.0 14.7
0.6 ACH	7.6 8.3	13.0 12.3	13.4	17.8 14.7	22.7 16.5	22.7
	\checkmark		← Possible	Implications	for Tier 2 \rightarrow	
Attached	Zone 4	Zone 5	Zone 6	Zone 7a	Zone 7b	Zone 8
3.0 ACH	-	-	-	-	-	-
2.5 ACH	<u>2.1</u>	<u>3.2</u>	<u>3.5</u>	<u>3.8</u>	<u>4.3</u>	<u>4.8</u>
2.0 ACH	2.2 4.3	3.0 <u>6.4</u>	3.5 <u>6.9</u>	4.6 7.6	4 <u>.1 8.5</u>	4.6 <u>9.6</u>
1.5 ACH	4.0 <u>6.4</u>	6.0 _ 9.6	6.9 <u>10.4</u>	9.1 <u>11.5</u>	8.2 12.8	9.3 <u>14.5</u>
1.0 ACH	6.0 <u>8.6</u>	9.1 – <u>12.8</u>	10.4 _ 14.0	13.6 15.4	12.3 <u>17.2</u>	14.2 19.6
0.6 ACH	7.7 <u>10.4</u>	11.6 15.6	13.3 <u>17.0</u>	17.4 <u>18.7</u>	15.6	18.2 23.8
				/		

Targets	T 1	T2	T 3	T 4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Implications:

Edmonton Example: Now: ~1.79 ACH = 6.1 points

Linear interpolation permitted (PCF 1834)

- Graphic Method
 - finding which ACH gives 6.1 Points

$$\mathbf{Y} = \mathbf{YI} + \frac{}{(\mathbf{X2} - \mathbf{X1})} * (\mathbf{X} - \mathbf{XI})$$
$$\mathbf{Y} = 1.5 + \frac{(2.0 - 1.5)}{(4.3 - 8.5)} * (\mathbf{6.1} - 8.5)$$
$$\mathbf{Y} = 1.5 + \frac{(0.5)}{(-4.2)} * (-2.4)$$
$$\mathbf{1.786} = 1.5 + (0.119 * 2.4)$$

Canadia Home Builders Association

V4)

Fenestration & Doors (<u>PCF 1889</u>)

• New Points for high performance windows and doors added

Table <u>[9.36.8.6.]</u> 9.36.8.6.

Energy Conservation Measures and Points for Fenestration and Doors Forming Part of Article 9.36.8.6.

Energy Conservatio Fenestration and D		Heating Degree-Days of <i>Building</i> Location, in Celsius Degree-Days							
Maximum U- values, W/(m²×K)	Minimum Energy Ratings (3)	Zone 4 < 3000	Zone 5 3000 to 3999	Zone 6 4000 to 4999	Zone 7A 5000 to 5999	Zone 7B 6000 to 6999	Zone 8 ≥ 7000		
<u>(2)</u>	Energy Conservation Points								
1.61	25	1.9	1.8	-	-	-	-		
1.44	29	3.8	3.6	1.6	1.8	-	-		
1.22	34	6.9	7.0	4.6	5.5	3.2	3.4		
<u>1.05</u>	<u>40</u>	<u>10.8</u>	<u>11.7</u>	<u>8.8</u>	<u>8.9</u>	<u>6.1</u>	<u>5.9</u>		
<u>0.94</u>	<u>42</u>	<u>12.3</u>	<u>13.4</u>	<u>10.5</u>	<u>10.7</u>	<u>8.0</u>	<u>7.8</u>		
0.82	44	<u>14.0</u>	<u>15.2</u>	12.4	12.6	<u>10.1</u>	<u>9.8</u>		

Cost Impact!

"[...] 5.9 and 15.2 energy conservation points [...] cost between \$63 and \$116 per m² of fenestration compared to the cost of fenestration required to meet the Code minimum. [U=1.61]"

Canadian Home Builders' Association

Building Envelope (PCF 1923)

• Existing Code has points for Walls Above Ground – Table 9.36.8.5.–A

	Energy C	onservation Meas	Table 9.36.8.5.ures and Points forentences 9.36.8.5.		Walls ⁽¹⁾	
Energy Conservation		Heating Deg	ree-Days of Building	Location, in Celsius	Degree-Days	
Measures for Above-Ground Walls - Minimum Effective	Zone 4 < 3000	Zone 5 3000 to 3999	Zone 6 4000 to 4999	Zone 7A 5000 to 5999	Zone 7B 6000 to 6999	Zone 8 ≥ 7000
RSI Values, (m ² ×K)/W		·	Energy Conse	ervation Points		
2.97	2.0	-	_	-	-	-
3.08	3.2	1.4	1.6	2.1	-	-
3.69	7.4	5.4	6.2	6.7	5.4	5.2
3.85	8.2	6.0	6.9	7.4	6.2	6.0
3.96	8.9	6.8	7.7	8.2	7.0	6.8
4.29	10.2	8.1	9.2	9.7	8.6	8.4
4.40	10.8	8.7	9.9	10.3	9.3	9.1
4.57	11.4	9.3	10.6	11.1	10.1	9.9
4.73	11.9	9.7	11.1	11.5	10.6	10.4
4.84	12.3	10.2	11.6	12.1	11.2	10.9
5.01	12.9	10.7	12.2	12.7	11.8	11.6
5.45	14.0	11.9	13.6	14.0	13.3	13.1

Targets	T1	T2	T 3	T4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Building Envelope (PCF 1923)

_

- Proposed new points for
 - <u>Ceilings Below Attics Table 9.36.8.5.–B</u>

Table [9.36.8.5B] Energy Conservation Measures and Po			s Below	<u>Attics</u>			
	Heating Degree-Days of Building Location in Celsius Degree-Days						
Energy Conservation Measures for Ceilings Below Attics- Minimum Effective RSI Values, (m ² ×K)/W ⁽¹⁾		Zone 5 3000 to 3999	Zone 6 4000 to 4999	Zone ZA 5000 to 5999	Zone ZB 6000 to 6999	<u>Zone</u> 8 ≥ 7000	
	Energy Conservation Points						
<u>8.67</u>	<u>1.2</u>	=	=	=	=	=	
<u>10.43</u>	<u>2.1</u>	<u>0.9</u>	<u>0.9</u>	=	_	=	
<u>12.19</u>	<u>2.7</u>	<u>1.6</u>	<u>1.6</u>	<u>0.7</u>	<u>0.8</u>	<u>0.8</u>	
<u>13.96</u>	<u>3.1</u>	<u>2.1</u>	<u>2.1</u>	<u>1.2</u>	<u>1.4</u>	<u>1.3</u>	

Targets	T1	T2	T3	T4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Building Envelope (PCF 1923)

• <u>Proposed new points for</u>

Cathedral Ceilings & Flat Roofs – Table 9.36.8.5.–C

1800-			ofs	
	-Days of sius Deg			
<u>6</u> <u>40</u> to	7A 000 50 to	<u>)00</u>	Zone 7B 6000 to 6999	<u>Zone</u> 8 ≥ 7000
serva	ation Po	<u>ints</u>		
0	0.5	=	=	=
0	<u>1.6</u> 1	L. <u>0</u>	<u>1.1</u>	<u>1.1</u>
_	23 1	L <u>.8</u>	<u>1.9</u>	<u>1.9</u>

Targets	T1	T2	T3	T4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Home Builder Associati

Building Envelope (PCF 1923)

 Proposed new points for Combined Ceilings Below Attics and Cathedral Ceilings/Flat Roofs – Table 9.36.8.5.–D

Energy Conservation Measure	<u>Table [9.36.8.5D] 9.36.8</u> es and Points for Combined Ceilin <u>or Flat Roofs</u>		ow Atti	<u>cs and</u>	Cathe	dral Ce	ilings	
	Heating Degree-Days of Building Location, in Celsius Degree-Days							
<u>Energy Conservation</u> <u>Measures for Ceilings Below</u> <u>Attics- Minimum Effective</u> <u>RSI Values, (m²×K)/W</u> ⁽¹⁾	Energy Conservation Measures for Cathedral Ceilings and Flat Roofs- Minimum Effective RSI Values, (m ² ×K)/W ⁽¹⁾	<u>Zone</u> 4 ≤ 3000	Zone Zone Zone Zone one 5 6 ZA 3000 4000 500 to to to		ZA 5000 to	7 <u>B</u> 6000 to	2	
		Energ	y Cons	ervatio	ervation Points			
<u>8.67</u>	<u>5.80</u>	1.3	=	=	=	=	_	
<u>10.43</u>	<u>5.80</u>	<u>1.8</u>	<u>1.1</u>	<u>1.1</u>	=	=	=	
12.19	<u>5.80</u>	<u>2.2</u>	<u>1.5</u>	<u>1.5</u>	<u>0.8</u>	<u>0.8</u>	0.8	
13.96	5.80	2.5	1.8	1.8	1.1	1.2	1.1	

Targets	T1	T2	T 3	T4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Building Envelope (PCF 1923)

- <u>Proposed new points for</u>
 - **Exposed Floors** ≥ 30m² Table 9.36.8.5.–**E**

nts for E	3.5. Exposed	Floors (≥	<u>2 30m²)</u>				
Heating Degree-Days of Building Location, in Celsius Degree-Days							
4 ≤	<u>3000</u> to	<u>Zone 6</u> 4000 to 4999	Zone ZA 5000 to 5999	Zone ZB 6000 to 6999	Zone <u>8</u> ≥ 7000		
Energy Conservation Points							
<u>0.2</u>	<u>0.2</u>	<u>0.2</u>	_	=	=		
<u>0.5</u>	<u>0.5</u>	<u>0.5</u>	0.2	<u>0.3</u>	<u>0.3</u>		
<u>1.1</u>	<u>1.1</u>	<u>1.1</u>	<u>0.9</u>	<u>1.0</u>	<u>0.9</u>		
	Heatin in Cell Zone 4 < 3000 Energ 0.2 0.5	Heating Degree in Celsius DegreeZoneZoneS 4 3000 to 5 3000 to 3000 5000 to 5000 5000 to 1000	Heating Degree-Days of in Celsius Degree-DaysZoneZone 5 3000Zone 6 4000 4 3000 4000 4 3099 4999 Energy Conservation P 0.2 0.2 0.2 0.5 0.5 0.5	Heating Degree-Days of Building Degree-Days Zone Zone 5 Zone 6 Zone 6 Zone 5 Zone 5 Zone 6 Zone 5 Zone 5 Zone 6 Zone 5 Zone 5	in Celsius Degree-Days Zone Zone 5 Zone 6 Zone 6 Zone 7 Zon 7 <thzon 7<="" th=""> Zone 7 <thzon 7<<="" td=""></thzon></thzon>		

Targets	T1	T2	Т3	T4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Building Envelope (PCF 1923)

• Existing points for

Below Grade or in Contact with the Ground – Table 9.36.8.7-A

Energy Conse	rvation Measure	es and Points for Op Forming Part of	baque Building As of Sentences 9.36.		rade or In Contact v	with Ground
Energy		Heating Deg	ree-Days of <i>Building</i>	Location, in Celsius	Degree-Days	
Conservation Measures for Foundation Walls –	Zone 4 < 3000	Zone 5 3000 to 3999	Zone 6 4000 to 4999	Zone 7A 5000 to 5999	Zone 7B 6000 to 6999	Zone 8 ≥ 7000
Minimum Effective RSI Values, (m²×K)/W			Energy Conse	ervation Points		
2.98	1.7	-	-	-	-	-
3.09	1.8	0.2	0.2	0.2	0.2	-
3.46	2.2	0.6	0.8	0.6	0.7	-
3.90	2.6	1.2	1.4	1.1	1.3	-

Targets	T1	T2	Т3	T4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Building Envelope (PCF 1923)

Proposed New Points for Slabs-on-Grade Table 9.36.8.7- B

-		s-on-Gra	ade.		
Heating Degree-Days of Building Location, Celsius Degree-Days					
<u>4</u> ≤	<u>3000</u> to	<u>Zone 6</u> <u>4000</u> <u>to</u> <u>4999</u>	Zone ZA 5000 to 5999	Zone ZB 6000 to 6999	<u>Zone</u> <u>8</u> ≥ 7000
Energ	y Conse	rvation P	oints		
<u>1.0</u>	<u>0.8</u>	<u>0.9</u>	=	=	=
<u>1.6</u>	<u>1.3</u>	<u>1.4</u>	=	=	=
2.0	1.7	1.8	0.5	0.5	_
	Heatin Celsin Zone 4 ≤ 3000 Energ 1.0 1.6	Heating DegreeZone 4 ≤ 3000Zone 5 3000 to 3999Energy Consent1.00.81.61.3	Heating Degree-DaysHeating Degree-DaysZoneZone 5Zone 6430004000 \leq 1010Energy Conservation F1.00.80.91.61.31.4	Heating Degree-Days of Buildi Celsius Degree-DaysZone 4 3000Zone 5 3000Zone 6 4000 to 3999Zone 6 2000 to 3999Energy Conservation Points1.00.80.91.61.31.4	Heating Degree-Days of Building Locat Celsius Degree-DaysZone 4 3000Zone 5 3000Zone 6 4000 to 3999Zone 7 A 5000 to 5999Zone 7 A 5000 to 5999Zone 7 A 5000 to 5999Energy Conservation Points1.00.80.9==1.61.31.4==

Targets	T1	T2	Т3	T4	T5
Total	0	10	<u>20</u>	<u>40</u>	<u>75</u>
Envelope	0	0	<u>5</u>	<u>10</u>	<u>15</u>

Proposed Code Changes Deep Dive

- 1. Where we are in the code process
- 2. Deep Dive on Energy Efficiency and GHG Emissions
 - ✓ Prescriptive Trade Off Method "Points" (\rightarrow 12:30)
 - Prescriptive Tier 5 "Packages" (10 min)
 - Solar Heat Gain / Peak Cooling (10 min)
 - Greenhouse Gas Emissions (20 min)
 - Heat Pumps (10 min)
- 3. How to Submit Comments for Public Review

Discussion Commentary Questions?

PRESCRIPTIVE TIER 5 – "PACKAGES"

adian Iders' iation

PCF 1830

- New Section
- Application
 - only for Tier 5! (we heat that other tiers may be in the works...)
 - housing only!
- Prerequisites:
 - Prescriptive + Airtightness Test
 - AL4A = 1.0 ACH
 - AL4B = 1.5 ACH
 - HRV or ERV @ 75% SRE
 - ASHP as primary space heating @ 75%
 - Min 1 Drain Water Heat Recovery unit
 - Electric Heat Pump Water Heater

- "Packages" (code tables) 💾
 - RSI / U-Values, Equipment efficiency
 - Small home relaxations
 - Electric & Dual Energy Packages
 - like Energy Star Builder Option Packages
- Several special exceptions (doors, glass block. Tubular Daylighting Devices (TDD), etc)
- Cost Impact Analysis
 - \$30,000 to \$40,000 more than Tier 1 house!
 - Analysis
 - 2500 ft² house/walk-out basement
 - base case = electric
 - Costing data from October 2020 ?

Canadiar Home Builders Association

Table 9.36.9.8.-C Homes < 300m³

Table 9.36.9.8.-A Homes > 300m³

Fully Electric Packages	Zone 4	Zone 5	Zone 6	Zone 7A	Zone 7B	Zone 8		Zone 4	Zone 5	Zone 6	Zone 7A	Zone 7B	Zone 8
Ceilings Below Attics (Min RSI Value)	10.43	12.19	12.19	12.19	12.19	12.19		8.67	8.67	8.67	10.43	10.43	10.43
Cathedral Ceilings and Flat Roofs (Min RSI Value)	4.67	5.02	5.02	5.02	5.80	5.80		5.02	5.02	5.02	5.02	5.02	5.02
Floors Over Unheated Spaces (Min RSI Value)	4.67	5.02	5.02	5.02	5.42	5.42		5.02	5.02	5.02	5.02	5.02	5.02
Walls Above Grade (Min RSI Value)	5.69	5.69	5.69	5.77	6.65	6.65	!	3.23	3.85	3.85	3.85	4.80	4.80
Foundation Walls (Min RSI Value)	3.46	3.46	3.97	4.78	5.22	5.22		3.46	3.46	3.97	4.78	5.22	5.22
Unheated Floors above frost line (Min RSI Value)	1.96	1.96	1.96	1.96	2.84	2.84		1.96	1.96	1.96	1.96	1.96	1.96
Unheated Floors below frost line (Min RSI Value)	1.96	1.96	1.96	1.96	1.96	1.96		1.96	1.96	1.96	1.96	1.96	1.96
Heated and unheated Floors on permafrost	-	-	-	-	4.62	4.62		-	-	-	-	4.44	4.44
Heated Floors (Min RSI Value)	2.84	2.84	2.84	3.72	3.72	4.62		2.84	2.84	2.84	3.72	3.72	4.62
Slabs-on-grade with an integral footing	1.96	3.72	3.72	3.72	4.62	4.62		2.84	2.84	2.84	3.72	3.72	4.62
Windows & Sliding Glass Doors (Max. U, Min ER)	1.05 or 40	1.05 or 40	0.94 or 42	0.94 or 42	0.82 or 44	0.82 or 44		1.05 or 40	1.05 or 40	0.94 or 42	0.94 or 42	0.82 or 44	0.82 or 44
Skylight (Maximum U-Value)	2.02	2.02	1.84	1.84	1.61	1.61		2.02	2.02	1.84	1.84	1.61	1.61
Space Heating Equipment — Heat Pump	HSPF V ≥ 8	.7 / HSPF2	√ ≥ 6.4 / SEE	R2 ≥ 15.2 /	EER2 ≥ 11.7			HSPF V ≥ 8.	7 / HSPF2 V	≥ 6.4 / SEE	R2 ≥ 15.2 / E	ER2 ≥ 11.7	
		Percent of Heating Capacity at −15 °C (5 °F) \ge 70% of that at 8.3 °C (47° F) / COPh \ge 1.5 at −15 °C(5 °F).						0 1	,	5 °C (5 °F) ≥ at –15 °C(5 °			
Electric Heat Pump Water Heater	UEF ≥ 2.9	5						UEF ≥ 2.95	5				

PRESCRIPTIVE TIER 5 – "PACKAGES"

0, 0	Zone 4	Zone 5	Zone 6	Zone 7A	Zone 7B	Zone 8		Zoi
Ceilings Below Attics (Min RSI Value)	10.43	12.19	12.19	12.19	12.19	12.19		8
Cathedral Ceilings and Flat Roofs (Min RSI Value)	4.67	5.02	5.02	5.02	5.80	5.80		5
Floors Over Unheated Spaces (Min RSI Value)	4.67	5.02	5.02	5.02	5.42	5.42		5
Walls Above Grade (Min RSI Value)	5.69	5.69	5.69	5.77	6.65	6.65		3
Foundation Walls (Min RSI Value)	3.46	3.46	3.97	4.78	5.22	5.22		3
Unheated Floors above frost line (Min RSI Value)	1.96	1.96	1.96	1.96	2.84	2.84	!	1
Unheated Floors below frost line (Min RSI Value)	1.96	1.96	1.96	1.96	1.96	1.96		1
Heated and unheated Floors on permafrost	-	-	-	-	4.62	4.62		
Heated Floors (Min RSI Value)	2.32	3.72	3.72	3.72	4.62	4.62		2
Slabs-on-grade with an integral footing	1.96	3.72	3.72	3.72	4.62	4.62		2
Windows & Sliding Glass Doors (Max. U, Min ER)	1.05 or 40	1.05 or 40	0.94 or 42	0.94 or 42	0.82 or 44	0.82 or 44		1.05
Skylight (Maximum U-Value)	2.02	2.02	1.84	1.84	1.61	1.61		2
	Percent of	7 / HSPF2 V Heating Capa °C (47° F) / C	acity at –15 °	°C (5 °F) ≥ 70	% of			HSPF Perce that a
	UEF ≥ 2.9			. ,				UEF
Supplementary Heating System								
	AFUE ≥ 8							AFU
Gas-fired Furnaces	See Table	e 9.36.4.2.						See

Table 9.36.9.8-C Homes > 300m³

Table 9.36.9.8-D Homes < 300m³

Z	Zone 4	Zone 5	Zone 6	Zone 7A	Zone 7B	Zone 8			
	8.67	8.67	8.67	10.43	10.43	10.43			
	5.02	5.02	5.02	5.02	5.02	5.02			
	5.02	5.02	5.02	5.02	5.02	5.02			
	3.23	3.85	3.85	3.85	4.80	4.80			
	3.46	3.46	3.97	4.78	5.22	5.22			
	1.96	1.96	1.96	1.96	1.96	1.96			
	1.96	1.96	1.96	1.96	1.96	1.96			
	-	-	-	-	4.44	4.44			
	2.84	2.84	2.84	3.72	3.72	4.62			
	2.84	2.84	2.84	3.72	3.72	4.62			
1.0	05 or 40	1.05 or 40	0.94 or 42	0.94 or 42	0.82 or 44	0.82 or 44			
	2.02	2.02	1.84	1.84	1.61	1.61			
HS	PF V ≥ 8.7	7 / HSPF2 V ≥	6.4 / SEER2	≥ 15.2 / EER2	≥ 11.7				
	Percent of Heating Capacity at −15 °C (5 °F) \ge 70% of								
	that at 8.3 °C (47° F) / COPh ≥ 1.5 at −15 °C (5 °F).								
	UEF ≥ 2.95								
	UE ≥ 8								
Se	e Table	9.36.4.2.							

Proposed Code Changes Deep Dive

- 1. Where we are in the code process
- 2. Deep Dive on Energy Efficiency and GHG Emissions
 - ✓ Prescriptive Trade Off Method "Points" (\rightarrow 12:30)
 - ✓ Prescriptive Tier 5 "Packages" (\rightarrow 12:40)
 - Solar Heat Gain / Peak Cooling (10 min)
 - Greenhouse Gas Emissions (20 min)
 - Heat Pumps (10 min)
- 3. How to Submit Comments for Public Review

Discussion Commentary Questions?

SOLAR HEAT GAIN / PEAK COOLING

PCF 1823

- <u>9.36.2.7 Prescriptive Path</u> Maximum Solar Heat Gain Coefficient (SHGC)
 - So that energy efficient design does not contribute to overheating risk

Table 9.36.2.7B Solar Heat Gain Coefficient of Fenestration and Doors							
Fenestration and door area to gross wall area ratio (FDWR)	Maximum solar heat gain coefficient						
FDWR < 17%	0.45						
17% < FDWR < 22%	0.40						
FDWR > 22%	0.26!						

• <u>9.36.5.3. Performance Path</u>

- Peak Cooling Criteria Relaxed & Corrected
 - Install a space-cooling system, or
 - Where no space-cooling system: calculated cooling load
 - peak cooling load not greater than 110% of the reference house, or
 - a design cooling intensity not greater than 4.5 W/m³

Proposed Code Changes Deep Dive

- 1. Where we are in the code process
- 2. Deep Dive on Energy Efficiency and GHG Emissions
 - ✓ Prescriptive Trade Off Method "Points" (\rightarrow 12:30)
 - ✓ Prescriptive Tier 5 "Packages" (\rightarrow 12:40)
 - ✓ Solar Heat Gain / Peak Cooling (\rightarrow 12:50)
 - Greenhouse Gas Emissions (20 min)
 - Heat Pumps (7 min)
- 3. How to Submit Comments for Public Review

Discussion Commentary Questions?

• Operational GHG emissions

- proposed for 2025 Codes
- emissions from operation of equipment for space heating and cooling and water heating (B6/7)

• Embodied GHG

- scheduled for 2030 Codes
- emissions from the production and generation of building materials (A1-A3) but not the construction process (A4/5)

General Requirements

- New NBC Objective & Functional Statements (PCF 1843)
- New NECB Objective & Functional Statements (PCF 1820)
- Application of GHG Requirements in **NECB** (PCF 1989)
- Abbreviations in **NECB** (PCF 2016)

General Requirements

New NBC Objective & Functional Statements (PCF 1843)

OE2 Greenhouse Gas Emissions

An objective of this Code is to limit the probability that, as a result of the design or construction of the building, greenhouse gas emissions will have an unacceptable effect on the environment. The risks of unacceptable effect on the environment due to greenhouse gas emissions addressed in this Code are those caused by—

• **OE2.1** - excessive emissions of greenhouse gases

F101 To limit operational greenhouse gas emissions.

General Requirements

New NBC Objective & Functional Statements (PCF 1843)

OE2 Greenhouse Gas Emissions

An objective of this Code is to limit the probability that, as a result of the intended operation and the selection a high-intensity energy source, greenhouse gas emissions will have an unacceptable effect on the environment. The risks of unacceptable effect on the environment due to greenhouse gas emissions addressed in this Code are those caused by—

OE2.1 selecting energy sources for space-heating and cooling equipment • and water heating equipment that have high-intensity emissions

F101 To control the type of energy sources used in space-conditioning and water heating systems.

Performance Path

(PCF 2003 NECB, PCF 2004 NBC 9.36.)

- Take Total Space Conditioning and Water Heating Energy **Demand Loads** from Model
- Multiply by regional **Emission Factor** based on proposed equipment fuel
- Compare against **Reference**:
 - Reference Emission Factor for Space Heating = 235g CO2e /kWh
 - Reference Emission Factor for Water Heating = 260g CO2e /kWh
- No Credit for Renewables!

Emission Performance Level	Improvement (%)
Α	≥ 90%
В	≥ 75%
С	≥ 50%
D	≥ 25%
E	≥ 10%
F	≥ 0%

	GHG Emission Factors (g CO ₂ e /kWh				
Province or Territory	Electricity	Utility Gas			
Alberta	181.86	189			
British Columbia	1.32	190			
Manitoba	0.00	185			
New Brunswick	77.88	185			
Newfoundland and Labrador	11.08	185			
Northwest Territories	6.82	185			
Nova Scotia	161.64	190			
Nunavut	465.16	190			
Ontario	57.90	185			
Prince Edward Island	80.42	185			
Quebec	0.38	186			
Saskatchewan	146.60	185			
Yukon	25.00	190			

Prescriptive Path

(PCF 2026, NBC only, not certain!)

- Lookup Table Concept for each Performance Level
- based on
 - Energy source for Space Heating
 - Energy source for Water Heating
 - Electricity Emission Factor
 - (sometimes Climate Zone)
- No credit for Renewables!

Excerpts, samples...

Minimum Energy Performance Tier for GHG Emissions Performance Level B						
Energy Source Space Heating	Energy Source Water Heating	Electricity Emission Factor (g CO2e/kWh)	Climate Zone	Minimum Energy Performance Tier		
		< 25	Any	2		
(any) Electricity	(any) Electricity	25 < EF < 100	Any	4		
		> 100	Any	5		

Minimum Energy Performance Tier for GHG Emissions Performance Level D						
Energy Source Space Heating	Energy Source Water Heating	Electricity Emission Factor (g CO2e/kWh)	Climate Zone	Minimum Energy Performance Tier		
Natural Gas	Natural Gas	Any	Any	4		
Electricity	Electricity	GEF ≤ 170	Any	2		
Natural Gas	Electricity	GEF ≤ 100	Any	1		
Electric Heat Pump	Electric Heat Pump or Storage Tank	GEF < 200	Any	1		

Canadian Home Builders' Association

Quick single-home study	GHG Emission Performance Levels by Fuel Options						
Province or Territory	All-Gas	All-Electric	Heat Pump + Electr. Backup	Heat Pump + Gas Backup			
Alberta	F	E	D	D			
British Columbia	F	Α	Α	С			
Manitoba	F	Α	Α	С			
New Brunswick	F	С	В	С			
Newfoundland and Labrador	F	Α	Α	С			
Northwest Territories	F	Α	Α	С			
Nova Scotia	F	D	С	D			
Nunavut	F	-	-	E			
Ontario	F	С	В	С			
Prince Edward Island	F	С	В	С			
Quebec	F	Α	Α	С			
Saskatchewan	F	D	С	С			
Yukon	F	В	Α	С			

Proposed Code Changes Deep Dive

- 1. Where we are in the code process
- 2. Deep Dive on Energy Efficiency and GHG Emissions
 - ✓ Prescriptive Trade Off Method "Points" (\rightarrow 12:30)
 - ✓ Prescriptive Tier 5 "Packages" (\rightarrow 12:40)
 - ✓ Solar Heat Gain / Peak Cooling (\rightarrow 12:50)
 - ✓ Greenhouse Gas Emissions (\rightarrow 13:10)
 - Heat Pumps (10 min)
- 3. How to Submit Comments for Public Review

Discussion Commentary Questions?

HEAT PUMP WATER HEATERS

PCF 2011

- Update to HPWH Performance Rating Metric (EF -> UEF)
- Alignment with latest Performance Testing Standard (CSA C745:20)
- Not intended to make the requirement more stringent

Type of Equipment	Input ⁽¹⁾	Performance Testing Standard	Performance Requirement ⁽²⁾
	Storage-Type Serv	ice Water Heaters	
	\leq 12 kW (V _r > 50 L but \leq 270 L)		$SL \le 35 + (0.20 V_r)$ (top inlet)
	≤ 12 KW (V _r > 50 L Dul ≤ 270 L)	CAN/CSA-C191	$SL \le 40 + (0.20 V_r)$ (bottom inlet)
Electric	≤ 12 kW (V _r > 270 L but ≤ 454 L)	CAINCOA-CI91	SL ≤ (0.472 V _r) - 38.5 (top inlet)
	≤ 12 kW (V ₁ > 270 L but ≤ 454 L)		SL≤ (0.472 V _r) - 33.5 (bottom inlet
	>12 kW	ANSI Z21.10.3/CSA 4.3 or DOE 10 CFR, Part 431, Subpart G, Appendix B	SL ≤ 0.30 +(102.2 V _s)
Heat pump water heaters	≤ 24 Å and ≤ 250 V	CAN/CSA-C745	EF ≥ 2.1
	\leq 22 kW and first-hour rating < 68 L		$UEF \ge 0.3456 - (0.00053 V_s)^{(4)}$
Gas-fired ⁽⁸⁾	≤ 22 kW and first-hour rating ≥ 68 L but < 193 L		$UEF \ge 0.5982 - (0.00050 V_s)^{(4)}$
	≤ 22 kW and first-hour rating ≥ 193 L but < 284 L	CAN/CSA-P.3	$UEF \ge 0.6483 - (0.00045 V_s)^{(4)}$
	\leq 22 kW and first-hour rating \geq 284 L		$UEF \ge 0.6920 - (0.00034 V_s)^{(4)}$
	> 22 kW but \leq 30.5 kW and $V_r \leq$ 454 L		UEF $\ge 0.8107 - (0.00021 \text{ V}_{s})^{(4)}$
	> 22 kW	> 22 kW DOE 10 CFR, Part 431, Subpart G, Appendix A	
	≤ 30.5 kW and first-hour rating < 68 L		$\begin{array}{l} EF \geq 0.68 - (0.0005 \ V_{r}) \ \text{or UEF} \\ \geq 0.2509 - (0.00032 \ V_{s}) \end{array}$
	≤ 30.5 kW and first-hour rating ≥ 68 L but < 193 L		$\begin{array}{l} EF \geq 0.68 - (0.0005 \ V_{f}) \ \text{or UEF} \\ \geq 0.5330 - (0.00042 \ V_{s}) \end{array}$
Oil-fired	≤ 30.5 kW and first-hour rating ≥ 193 L but < 284 L	CAN/CSA-B211 for EF or CAN/CSA-P.3 for UEF	$EF \ge 0.68 - (0.0005 V_r)$ or $UEF \ge 0.6078 - (0.00042 V_s)$
Oil-hired	≤ 30.5 kW and first-hour rating ≥ 284 L		$EF \ge 0.68 - (0.0005 V_r)$ or UEF $\ge 0.6815 - (0.00037 V_s)$
	> 30.5 kW but \leq 40.99 kW and V_r \leq 454 L		UEF ≥ 0.6740 - (0.00035 V _s)
	> 40.99 kW	DOE 10 CFR, Part 431, Subpart G, Appendix A	E _t ≥ 80% and SL ≤ (1.25 Q) + (16.57 √V _t)

HEAT PUMP EFFICIENCIES (SPACE HEATING)

- Energy Savings Potential of Heat Pumps vary based on:
 - Energy Performance Rating (HSPF2 Region V)
 - Operating Conditions (Outdoor Temperature)
 - Capacity of the System vs Design Heating Load (F280)

HEAT PUMP EFFICIENCIES (SPACE HEATING)

PCF 2001

- Ultimate flexibility
- Modulate points based on
 - Performance Rating
 - System Capacity

<u>Table [9.36.8.9C1</u> Equations to Calculate Points for Air-Source Heat Pumps Forming Part of Sentence 9.36.8.9.(5)											
Heating Degree-Days of Building Location, in Celsius Degree-Days											
<u>Zone 4 < 3000</u>	<u>Zone 5 3000</u> <u>to 3999</u>	<u>Zone 6</u> 4000 to 4999	<u>Zone 7A</u> <u>5000 to</u> <u>5999</u>	<u>Zone 7B</u> 6000 to 6999	<u>Zone 8 ≥</u> 7000						
	Ē	nergy Conser	vation Points								
<u>17.7+(0.0647 F)</u> +(1.46 HSPF2 V) ⁽¹⁾	<u>2.4+(0.198</u> <u>F) +(1.65</u> <u>HSPF2 V)</u>	<u>(0.198 F) +</u> <u>(1.65</u> <u>HSPF2 V)</u>	(0.180 F) + (1.47 HSPF2 V)	<u>3.0+(0.147</u> <u>F) +(1.55</u> <u>HSPF2 V)</u>	<u>-4.7+(0.165</u> <u>F) +(1.06</u> <u>HSPF2 V)</u>						

Note to Table [9.36.8.9.-C] :

The symbols and abbreviations used in this row have the following meanings:
F = rated capacity of air source heat pump at conditions of 8.3 °C divided by required capacity of heating appliances determined in accordance with Sentence 9.33.5.1.(1), in %
HSPF2 V = heating seasonal performance factor for Region V

HEAT PUMP EFFICIENCIES

Canadiar Home Builders Association

PCF 2001

 Heat pump has to meet 60% design heat load

Energy Conservation Measures for Air Source Heat Pumps – Heating Seasonal Performance Factor for Region V, HSPF2 V (1)		<u>Minimum Air</u> Source Heat <u>Pump</u> <u>Capacity/Load</u> Fraction ⁽²⁾	Heating Degree-Days of Building Location, in Celsius Degree-Days					
			<u>Zone</u> <u>4 <</u> <u>3000</u>	<u>5</u> 3000 to	<u>6</u> 4000 to	<u>7A</u>	Zone 7B 6000 to 6999	<u>8 ≥</u>
		Energy Conservation Points						
5.2			28.6	22.9	20.5	18.4	<u>19.9</u>	<u>10.7</u>
<u>6.7</u>			30.8	<u>25.3</u>	<u>22.9</u>	20.6	22.2	<u>12.3</u>
7.6		60%	32.1	26.8	24.4	22.0	23.6	13.3
<u>8.3</u>			33.1	28.0	25.6	23.0	<u>24.7</u>	<u>14.0</u>
9.6			35.0	30.1	27.7	24.9	26.7	<u>15.4</u>

determined in accordance with Sentence 9.33.5.1.(1)

Proposed Code Changes Deep Dive

- 1. Where we are in the code process
- 2. Deep Dive on Energy Efficiency and GHG Emissions
 - ✓ Prescriptive Trade Off Method "Points" (\rightarrow 12:30)
 - ✓ Prescriptive Tier 5 "Packages" (\rightarrow 12:40)
 - ✓ Solar Heat Gain / Peak Cooling (\rightarrow 12:50)
 - ✓ Greenhouse Gas Emissions (\rightarrow 13:10)
 - ✓ Heat Pumps (→ 13:20)
- 3. How to Submit Comments for Public Review

Discussion Commentary Questions?

How to Enter Public Review Comments

Canadian Home Builders' Association Suite 500, 141 Laurier Ave W, ON K1P 5J3 <u>chba@chba.ca</u> | chba.ca | 613-230-3060

Canadian Home Builders' Association

Home > Public review of proposed changes to the 2020 National Model Codes

Public review of proposed changes to the 2020 National Model Codes

This national public review runs from October 23 to December 18, 2023.

The Canadian Board for Harmonized Construction Codes (CBHCC) invites code users, the Codes community, and the public to participate in the fall 2023 public review of proposed changes to the 2020 editions of the National Model Codes. The proposed changes included in this public review address the following topics in the National Building Code of Canada, the National Fire Code of Canada, the National Energy Code of Canada for Buildings, and the National Plumbing Code of Canada:

- alterations to existing buildings
- greenhouse gas emissions
- radon
- airtightness
- · accessibility illumination levels and projection of protruding building elements
- · building envelope thermal bridging and insulation
- building fire safety
- climatic loads
- combustible construction fire protection and safety
- encapsulated mass timber construction
- HVAC equipment efficiency
- large farm buildings
- · hazardous materials and activities
- · plumbing materials and equipment
- fire protection
- use and egress
- penetrations
- · prescriptive trade-off path
- · vegetated roof assemblies
- · windows, doors and skylights
- · environmental separation standards
- lighting
- fenestration thermal characteristics

See the summary of key proposed changes below for more details.

The purpose of this public review is to:

- · provide code users, the Codes community, and the public with a detailed look at proposed technical changes, and
- seek comment on each proposed technical change as to whether it should be approved, altered or withdrawn

The public review will close at 11:59 pm PST on December 18, 2023, after which comments will no longer be accepted.

The result of the public review process is a collection of comments on proposed code changes. The comments are sorted and

CHBA PROCESS FOR PUBLIC REVIEW COMMENTS

CHBA communicates Public Review to its members

CHBA National staff reviews the proposed changes and drafts comments

CHBA holds webinar series for members and gathers broad feedback

TRC-Mgmt Committee reviews draft comments and gathers provincial HBA feedback

National **staff revises and submits final comments** (Local/Provincial HBAs or individual members may want to submit reinforcing comments)

CHBA's aim is to ensure alignment with all three levels of the Association before submitting comments.

PUBLIC REVIEW COMMENTS

Well-written comments can make a big difference!

- Describe how the proposed change applies to your situation
- Describe what works, what doesn't
- Explain why you can't support the change
- **Propose your own modifications**, suggest alternative approaches
- Justify your proposed modifications/alternatives
- Support them with evidence, or cost, if possible
- Be concise and precise
- If your comment gets long
 - stick to one comment/idea per paragraph
 - number your comments/ideas/issues, and/or
 - use headings

Questions?

alex.bols@chba.ca jack.mantyla@chba.ca frank.lohmann@chba.ca kathleen.maynard@chba.ca

Canadian Home Builders' Association Suite 500, 141 Laurier Ave W, ON K1P 5J3 <u>chba@chba.ca</u> | chba.ca | 613-230-3060 Canadian Home Builders' Association

