WEBINAR SERIES

Public Reviews for the 2025 National Construction Codes

Webinar #4: Alterations to Existing Buildings (Renovations) – Part 2

Webinar #5: Code Change Overview – Winter And Spring 2024 Public Reviews

Webinar #6: Energy Modelling and Airtightness Testing **April 12th, 12:00-1:30 PM ET**

Webinar #7: Accessible Dwellings

RESERVE YOUR SEAT!

MISSED A WEBINAR IN THIS SERIES?

Webinar #1: Proposed code changes - overview

Webinar #2: Introducing proposed code changes for renovation

Webinar #3: Deep dive into Part 9 energy efficiency and GHG requirements

Check out the archive here

Alex Ferguson, Housing Team Project Leader, Natural Resources Canada

Mark Rosen, Director of Building Science, Building Knowledge Canada

Energy Modelling & Airtightness Testing

Host: Alex Bols, Q & A: Frank Lohmann

April 12th, 2024

Check out the archive here

OVERVIEW OF CODE PROCESS

Before

Committees develop changes with

- existing and proposed wording
- Problem & Justification

SC

- Cost/Benefit
- Enforcement

During

PCF

We submit comments on proposed changes

- Support as is
- Support with Comments
- Support with modifications
- Do Not Support

SC

DEFER

ACCEP1

– No comment

PR

After

Committees

CBHCC

- review all comments
- recommend to:
 - accept PCF
 - as proposed
 - as revised with modifications
 - withdraw PCF
 - defer work on the issue

Meeting Calendar

PUBLIC REVIEW COMMENTS

Well-written comments can make a big difference!

- Describe how the proposed change applies to your situation
- Explain why you can't support the change
- Propose modifications, suggest alternative approaches
- Support them with evidence, or cost, if possible
- Public Review Comments Categories
 - Do not Support (reason)
 - Remain Silent No Comment
 - Support as is
 - Support with Comments
 - Support with Modifications

Home Builders' Association

CBHCC CCHCC

Canada

atural Resources Ressources naturelles Canada

Tiered Codes and Energy Use Metrics

April 12, 2024

Canada

Alex Ferguson and Sara Gilani CanmetENERGY Buildings & Renewables Group

Abstract

- This presentation outlines proposed changes to Canada's National Building Code (NBC) that will make it easier for some builders to comply with the NBC's tiered energy requirements.
- These changes relate to the metrics that builders and code officials use to measure household energy use.
- If adopted, the changes are expected to make it easier and less-expensive for builders of some housing types level housing products to meet present and future energy requirements.

Key Highlights

- Draft changes to the national building code provide an alternate pathway for builders to meet energy tier requirements.
- These changes allow builders to use efficient architectural form to demonstrate energy savings, providing a lower cost means to comply with NBC energy targets.
- These changes are expected to reduce the cost of constructing common affordable and entry-level housing designs, including row homes and MURBS.

Caveats

- These draft changes will be posted for public review in 2024. They may be further altered or withdrawn from the future 2025 National Building Code.
- As currently drafted, these changes provide an alternate compliance pathway for Part 9 housing.
- They do not alter or limit existing prescriptive or performance pathways in the code (NBC 9.36 Sections 2-8).

Current Status: Canada's Tiered Energy Code

The 2020 NBC includes forward looking targets to reduce energy use. These requirements were inspired by the earlier BC Energy Step Code. They are intended to help builders and code officials get ready for future code requirements.

Canada

Tiers and Targets

NBC Section 9.36 provides five performance tiers, the highest of which targets 70% energy savings.

Each tier also includes targets for building envelope performance, as well as limits on cooling loads.

Performance tiers for low-rise housing (NBC Part 9)

Natural Resources Ressources naturelles Canada Canada

NBC Energy Calculations

Code compliance is determined through energy calculations. Builders use energy calculation software, such as HOT2000, to predict the energy savings that the energy conservation measures will achieve.

Savings are computed relative to a **reference energy benchmark.** Each energy tier fraction of savings that must be achieved relative to the energy benchmark.

The 2020 NBC uses the **reference House** approach to establish that energy benchmark.

Reference House Compliance Pathway

Reference House Energy Model: Envelope, mechanical systems as per code-minimum **Proposed Design Energy Model:** Envelope, mechanical systems as per house design

The code requires builders to construct two energy models. One reflects the proposed house design. The other is an exact copy of the house, as if it had been built to code minimum requirements.

Builders comply with the code by showing that the proposed design model uses less energy than the reference house energy model.

The Reference House & Architectural Form

The reference and proposed models have the same architectural form and features.

Builders can only use energy efficiency measures (insulation, equipment) to demonstrate energy savings and comply with the code.

Application to MURBS

This approach means that the code ignores the energy savings achieved with efficient architectural forms — attached, row and stacked MURB homes.

These homes are more efficient than traditional housing because they have less envelope area. They need less heat in winter, and they use less energy.

But they must still meet the code's stringent requirements for insulation, air sealing and equipment efficiency.

Canada

Pending Changes for 2025: Energy Use Intensity

A new compliance path is being developed for the 2025 code. This approach is based on energy use intensity (EUI) metrics, Canadian applications oof EUI metrics were pioneered in the BC Energy Step Code.

EUI metrics are intended to address complaints that the reference house approach affords stringent energy budgets for compact houses, but is more generous when used on articulated homes.

Source: S. Foroushani, R. Bernhardt, M. Bernhardt (2022) "On the use of the reference building approach in modern building energy codes"

Alternate EUI-based compliance pathway

Existing Performance Compliance Pathway

The EUI compliance pathway replaces the reference building model with an energy use intensity (EUI) target. EUI depend on the local climate, and scale by floor area.

Most importantly, they are not affected by architectural form. That means builders are credited for shapes that are more energy efficient.

EUI Budgets

While the reference house energy budget, varies with house geometry, EUI budgets are the same for homes of the same size.

Builders of detached and articulated housing forms will find EUI metrics more stringent.

Builders of compact & attached homes will find EUI metrics more permissive.

Wall to Floor Area Ratio

Proposed Changes For NBC 2025

CBHCC has published proposed code changes that implement an alternate compliance pathway based on Energy Use metrics.

This pathway uses many of the same modelling rules in NBC 9.36.5, but eliminates the reference house.

Proposed Change 1869

Code Reference(s):	NBC20 Div.B 9.36. (first printing)
Subject:	Energy Use Intensity
Title:	Energy Use Intensity Metric Path
Description:	This proposed change introduces a new energy performance compliance path to Section 9.36. of Division B of the NBC based on the energy use intensity target of the building.

This change could potentially affect the following topic areas:

Division A	Division B
Division C	Design and Construction
Building operations	Housing
Small Buildings	Large Buildings
Fire Protection	Occupant safety in use
Accessibility	Structural Requirements
Building Envelope	Energy Efficiency
Heating, Ventilating and Air	Plumbing
Conditioning	Construction and Demolition
	Sites

Requirements: Local Heat Loss Factor & Local Energy Use Factor

- The proposed EUI metrics are based on two climate-specific parameters: the Local Heat Loss Factor and the Local Energy Use Factor
- Both factors depend on the local climate, and are computed using regional heating degree day data.

Local heat loss factor (kWh/m²·year) = $(0.02 \times HDD) + 32.6$

Local energy use factor (kWh/m²·year) = $(0.02 \times HDD) - 12.3$

Requirements: Gross space heat loss budget

- The local heat loss factor is multiplied by the floor area to establish the Gross Space Heat Loss budget.
- The range of floor areas used when computing the budget is limited to 115-350m²
- Homes smaller than 115 m² have an easier compliance pathway; homes bigger than 350m² have a harder compliance pathway.

Canada

Table [9.36.8.3.-B]

Annual Gross Space Heat Loss Budget

<u>Heated Floor Area, m²</u>	Annual Gross Space Heat Loss Budget, kWh/year
<u>Heated Floor Area < 115 m²</u>	local heat loss factor × 115
<u>115 m² < Heated Floor</u> <u>Area < 350 m ²</u>	local heat loss factor × heated floor area
<u>Heated Floor Area > 350 m²</u>	local heat loss factor × 350

Requirements: Gross space heat loss budget

- The local energy use factor is also scaled by the floor area, and capped for homes smaller than 115m² or bigger than 350m²
- The reference energy budget is also increased by 6500 kWh/year. This represents the water heating load, and does not scale by floor area.

<u> Table [9.36.8.5.-B]</u>

Reference Energy Use Budget

Heated Floor Area, m ²	Reference Energy Use Budget, kWh/year
Heated Floor Area < 115 m^2	(local energy use factor × 115) + 6500
$\frac{115 \text{ m}^2 \text{< Heated}}{\text{Floor Area} \text{< } 350 \text{ m}^2}$	$(local energy use factor \times heated floor area) + 6500$
<u>Heated Floor Area > 350 m²</u>	(local energy use factor \times 350) + 6500

Requirements: Gross Space Heat Loss & Energy Consumption Targets

The EUI budgets are then scaled by adjustment factors to compute targets for each tier.

Applicable Energy Performance Tier	<u>Tier 1</u>	<u>Tier 2</u>	<u>Tier 3</u>	<u>Tier 4</u>	<u>Tier 5</u>
Gross Space Heat Loss Adjustment Factor	1.00	0.95	0.90	0.80	0.60
Energy Consumption Target Adjustment Factor	1.00	0.90	0.80	0.60	0.30

(These are the same ratios as 9.36.7's Envelope performance Improvement & Overall Energy Performance Improvement targets)

											Tier	/ Step	53						
4	Vancouver	2825 HDDs							•										
5	Toronto	3520 HDDs																	
6	Halifax	4000 HDDs								(
	Montreal	4200 HDDs																	
	Ottawa	4500 HDDs																	
	Frederiction	4670 HDDs										•							
	Saint Johns	4800 HDDs										•							
7a	Calgary	5000 HDDs										•	•						
	Quebec	5080 HDDs										•	•						
	Edmonton	5120 HDDs										•	•						
	Winnipeg	5670 HDDs																	
7b	Whitehorse	6580 HDDs																	
8	Yellowknife	8170 HDDs														• •)		
	Iqaluit	9980 HDDs														•			
BC Pro	BC Energy Targe posed NBC Ener	et rgy target	0K 2	K 4	K	6K	8K 1	10K 1 En	2K 1 ergy l	4K 1 Budg	6K 18 et for	8K 20 200m)K 22 n² hou:	K 24K se (kWł	26K 2 n/yr)	28K 3	0K 3	2K 34	1K 36ł

Comparison to BC Energy Step Code – Step 3

24

This graph compares energy budgets from the BC Energy Step Code and the proposed EUI based Tier 3 for a 200m² house

											Tier	/ Step	o 4							
4	Vancouver	2825 HDDs																		
5	Toronto	3520 HDDs																		
6	Halifax	4000 HDDs						••												
	Montreal	4200 HDDs						•												
	Ottawa	4500 HDDs																		
	Frederiction	4670 HDDs																		
	Saint Johns	4800 HDDs																		
7a	Calgary	5000 HDDs							(• •										
	Quebec	5080 HDDs								••										
	Edmonton	5120 HDDs								••										
	Winnipeg	5670 HDDs																		
7b	Whitehorse	6580 HDDs																		
8	Yellowknife	8170 HDDs																		
	Iqaluit	9980 HDDs																		
BC Pro	BC Energy Targe posed NBC Ener	et rgy target	0K 2K	4K	6K	8K	10K	12K	14	K 16	K 1	8K 2()K 22	K 24k	(26k	< 28k	< 30k	(32K	34	K 36k

Comparison to BC Energy Step Code – Step 4

This graph compares energy budgets from the BC Energy Step Code and the proposed EUI based Tier 3 for a 200m² house

Energy Budget for 200m² house (kWh/yr)

Canada

											lier	/ Ste	ep 5								
4	Vancouver	2825 HDDs			•																
5	Toronto	3520 HDDs			•																
6	Halifax	4000 HDDs			(•															
	Montreal	4200 HDDs				•															
	Ottawa	4500 HDDs				•															
	Frederiction	4670 HDDs				•															
	Saint Johns	4800 HDDs				•															
7a	Calgary	5000 HDDs				•															
	Quebec	5080 HDDs				•															
	Edmonton	5120 HDDs				•															
	Winnipeg	5670 HDDs				(•		•												
7b	Whitehorse	6580 HDDs					•														
8	Yellowknife	8170 HDDs						•			•										
	Iqaluit	9980 HDDs							•		•										
BCB Prope	C Energy Target osed NBC Energ	gy target	0K 2	2K 4	K 6	6K 8	3K 1	0K 1	2K 1 ergy	4K 1 Buda	6K 1 et for	8K 2	20K 2 m² ho	2K 2	4K 26 kWh/v	K 28	K 30	K 32	:K 34	IK 36	K

Comparison to BC Energy Step Code – Step 5

This graph compares energy budgets from the BC Energy Step Code and the proposed EUI based Tier 3 for a 200m² house

Expected outcomes with EUI metrics

Our analysis shows that compact designs — especially those that are attached to adjacent units — benefit from using EUI metrics. These homes use less energy than more complicated and articulated shapes. For the first time, builders can use simplified architectural forms to demonstrate energy savings alongside traditional conservation measures.

Easier compliance under existing reference building pathway

Ressources naturelles

Canada

Natural Resources

Canada

Results from real-world case studies

We collected HOT2000 data from 19 recently constructed dwellings, and contrasted their compliance under NBC 9.36.7 vs PCF 1823.

28

Expected outcomes with EUI metrics

Expected outcomes with EUI metrics

Significant Benefit Stacked & row homes	Some Benefit: Compact & semi-attached	<u>No Benefit:</u> Complex, detached homes
~25% of homes will reach Tier 3 or higher when constructed to code minimum requirements.	~25% of homes will reach Tier 1 or 2 when constructed to code minimum requirements.	~50% of homes will not comply under EUI compliance pathways.
These homes proximately feature attached forms that reduce envelope area. Costs to reach each energy tier is expected to be much lower for these homes.	These types of homes feature compact detached or semi- detached forms. Builders will still need some energy savings measures to reach higher tiers.	These homes feature complex shapes, and will continue to depend on traditional energy savings measures to comply via the reference building pathway

Status of EUI Metrics

These proposed code changes are scheduled to be submitted for public review and comment in February 2024. If approved, they will be incorporated into the NBC in 2025.

References

S. Gilani, A. Ferguson & M. Stylianou (2022) "A simulation-based evaluation of the absolute and comparative approaches in a code compliance process from the energy use perspective: Cold-climate case study" <u>https://link.springer.com/article/10.1007/s12273-021-0859-7</u>

S. Foroushani, R. Bernhardt, M. Bernhardt (2022) "On the use of the reference building approach in modern building energy codes"

https://www.sciencedirect.com/science/article/pii/S0378778821010100

BC Housing (2018) "BC Energy Step Code — 2018 Metrics Research Report" <u>https://www.bchousing.org/research-centre/library/residential-design-construction-guides/energy-step-</u> <u>code-2018-metrics</u>

Thank-you!

This presentation draws extensively on Dr. Sara Gilani's research into energy use metrics for residential buildings.

This work was informed by prior research by Dr. Sepehr Foroushani and Mark Bernhardt.

Jack Zhou (A&J Consultants), Troy Tilbury (Building Knowledge Inc.) and **Dave Turnbull** (Enerspec Consulting) provided the case study data presented on Slide 23.

This work was completed with funding from the Office of Energy Research and Development, at Natural Resources Canada.

Contacts:

Alex.Ferguson@nrcan-rncan.gc.ca Sara.Gilani@nrcan-rncan.gc.ca Meli.Stylianou@nrcan-rncan.gc.ca

Canada

NBC 2025 PCF 1819

AIRTIGHTNESS: NLR₅₀

An Update on Proposed Code Changes

MARK ROSEN Director of Building Science

Apr 12th, 2024

Overview

- Terminology
- Challenges: ACH₅₀ in the 2020 NBC
- Proposed Changes: NLR₅₀ in the 2025 NBC (PCF 1819)
- What this means for houses

Terminology

Proposed House

The house you plan to build

Reference House

Code minimum version of the house you plan to build

Terminology

Guarded Test

Blower door test on an attached home where additional fans are used in adjacent units to neutralize leakage through shared surfaces

Unguarded Test

Blower door test on an attached home where fans are only used on the tested unit

Guarded Test

Unguarded Test

Terminology

ACH₅₀

Air Changes at 50 Pa

Unitless

NLR₅₀

Normalized Leakage Rate at 50 Pa

L/s•m² (Metric) or cfm/ft² (Imperial)

Relates to Volume

Relates to Surface Area

Terminology

SV Ratio

Surface Area to Volume Ratio

Unitless (but based on metric inputs)

Tends to decrease as homes get larger

Problem #1

Size & Shape of Airtightness of the Home ACH₅₀ the Envelope (SV Ratio)

BUILDING

 (NLR_{50})

Why is this a problem?

- Small homes tend to have higher SV ratios, making it more difficult to achieve ACH₅₀ targets,
- Large homes tend to have lower SV ratios, making it less difficult to achieve ACH₅₀ targets,
- Regardless of size or SV ratio, the Reference House always uses a fixed ACH₅₀ value

SV Ratio & Compliance

SV Trend by House Volume

ANADA INC

Proposed Change #1: Fixed NLR₅₀

PCF 1819: Proposes using **fixed NLR**₅₀ **values** instead:

- **0.89 L/s•m² for detached homes** (0.18 cfm/ft²)
- **1.17 L/s•m² for attached homes** (0.23 cfm/ft²)

 ACH_{50} values for the Reference House are calculated from these fixed NLR₅₀ values

Problem #1: Fixed ACH₅₀

What Does This Mean for Houses?

Example #1

- Detached 2 storey home
- 3300sf
- Volume 785m³, Surface Area 532m²
- SV ratio 0.68

What Does This Mean for Houses?

Example #2

- Small Detached 1 storey home
- 1300 sf
- Volume 299m³, Surface Area 310m²
- SV ratio 1.04

* 3.32 ACH₅₀

* 2.0 ACH₅₀

NBC 2020 uses fixed 3.0 ACH $_{50}$ for all attached homes

NBC 2020 uses fixed 3.0 ACH₅₀ for all attached homes

NBC 2020 uses fixed 3.0 ACH₅₀ for all attached homes

Hot2000 assumes all leakage is from the exterior (therefore representing heat loss or gain)

Unguarded testing measures all leakage and can't differentiate, leading to misalignment in Hot2000

SV Ratio & Compliance

Guarded Test

Unguarded Test

Medium mid-row house

- SV Ratio 0.95 (whole zone)
- **402** m³ volume
- 60% Exposed Envelope Area

Unguarded Test

NLR50 1.17 L/s•m2

Proposed House:

Results from blower door test entered directly into energy model, despite inclusion of party wall leakage

Reference House:

Assumes 3.0 ACH50, all leakage from

Proposed Change #2: Exterior Surfaces

Proposed House:

NLR₅₀ results (1.17 L/s \bullet m²) are applied only to exterior surfaces to determine ACH₅₀ for energy model

Reference House:

Assumes 1.17L/s•m2 through exterior surfaces only to determine equivalent ACH₅₀

Proposed Change #2: Exterior Surfaces

PCF 1819: Proposes applying NLR₅₀ to exterior surfaces only for attached homes

- Reduces the overall impact of measured air leakage on the total energy use of attached homes
- Better alignment between reference house and unguarded blower door test results

What Does This Mean for Houses?

Example #3

- Mid-unit 2 storey townhome
- 2500sf
- Volume 623m³, Exterior Surface Area 307m²
- SV ratio 0.49

Example #3: 2500sf Mid-unit Townhome

Example #3: 2500sf Mid-unit Townhome

What Does This Mean for Houses?

Example #4

- Small MURB unit
- 1005sf
- Volume 270m³, Exterior Surface Area 86m²
- SV ratio 0.32

Example #4: Small MURB unit

* 4.27 ACH₅₀

Example #4: Small MURB unit

Proposed Changes: A couple more things

PCF 1819 also proposes the following prescriptive changes:

- Differentiates assumed prescriptive airtightness for attached and detached homes (0.89 / 1.17 L/s•m²⁾
- Alignment between 9.36 and Tiers to allow the use of prescriptive values of 0.89 / 1.17 L/s•m² without a blower door test (provided 9.25.3 and 9.36.2.9-.10 measures are followed)

PCF 1819: Recommended to Public Review

Watch for this proposed change to be included in the next Public Review period for the 2025 NBC

CHBA Technical Research Council

THANK YOU

MARK ROSEN Director of Building Science mark.rosen@buildingknowledge.ca

<u>alex.bols@chba.ca</u> jack.mantyla@chba.ca frank.lohmann@chba.ca

> Canadian Home Builders' Association

Webinar #7: Accessible Dwellings

Canadian Home Builders' Association Suite 500, 141 Laurier Ave W, ON K1P 5J3 <u>chba@chba.ca</u> | chba.ca | 613-230-3060